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5.1 INTRODUCTION

ln Chapter 4 we talked about the motion of electrons in solids, using the free-
electron model. This model is oversimplified, however, because the crystal potential
is neglected. But this potential cannot be entirely disregarded if one is to explain
the experimental results quantitatively. In addition, some effects cannot be ex-
plained at all without taking this potential into account, as we pointed out at the end
of Chapter 4. The present chapter therefore treats the influence of the crystal
potential on the electronic properties of solids.

In the first part of the chapter we shall consider the energy spectrum of an
electron in a crystal. we shall see that the spectrum is composed of continuous
bands,unlike the case for atoms, in which the spectrum is a set of discrete levels.
We shall discuss the properties and the corresponding wave functions of these bands
in detail, and develop a useful criterion for distinguishing metals from insulators
in this band model. Then we shall deal with the density of states and the Fermi
surface, which serve as useful characteristics of a solid.

The electrons in a crystal are in a constant state of motion. Formulas are
developed for calculating the velocity of an electron, and its effective mass. We shall
study the effects of an electric field on the motion of an electron, and then derive
an expression for the electron's electrical conductivity. Although this expression
reduces to the one derived previously in chapter 4 under the appropriate cir-
cumstances, the form we shall develop here is more general, and brings out more
clearly the physical factors influencing conductivity.

Cyclotron resonance and the Hall effect will also be discussed again and we shall
show how these phenomena may be used to obtain information on a solid.

The last section will deal with the limitations of the energy-band model, and
the metal-insulator transition.

5.2 ENERGY SPECTRA IN ATOMS, MOLECULES, AND SOLIDS

The primary purpose of this section is to describe qualitatively the energy spectrum
of an electron moving in a crystalline solid. It is helpful, however, to begin the
discussion by considering the spectrum of a free atom, and see how this spectrum
is gradually modified as atoms are assembled to form the solid.

Let us take lithium as a concrete example. Consider a free lithium atom:
The electron moves in a potential well, as shown in Fig. 5.1(a). when we solve the
Schrcidinger equation, we obtain a series of discrete energy levels, as shown. As
in the case of the hydrogen atom, these levels are denoted by ls, 2s,2p, etc. The
lithium atom contains three electrons, two of which occupy the I s shell (completely
full), and the third the 2s subshell.

Now consider the situation in which two lithium atoms assemble to form
the lithium molecule Li2. The potential "seen" by the electron is now the double
well shown in Fig. 5.1(b). The energy spectrum here is comprised of a set of
discrete doublets: Each of the atomic levels-that is, the ls, 2s,2p, etc.-has split
into two closely spaced levels. Because of the close generic relation between the
atomic and molecular levels, we may also speak of the ls, 2s,2p, etc., molecular
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Fig. 5.1 The evolution of the energy spectrum of Li from an atom (a), to a molecule (b)'

to a solid (c).

energy levels, recognizing that each of these is, in fact, composed of two sublevels.

We can see why the atomic level splits into two, and only two, sublevels in a

diatomic molecule from our treatment of the hydrogen molecule ion Hlr (Section

A.7). The reason is essentially as follows: When the two Li atoms are far apart,

the influence of one atom on an electron in the other atom is very small, and may be

treated as a perturbation. In this approximation, the unperturbed levels ls, 2s'

etc., are each doubly degenerate, because an electron in a ls level, for instance, may

occupy that level in either atom; and since there are two atoms, the energy is thus

doubly degenerate. This degeneracy is strictly valid only if the interaction between

the atoms is neglected entirely. When this interaction is included, the double

degeneracy is lifted, and each level is split into its two sublevels. The molecular

orbitals corresponding to these sublevels are usually taken to be the symmetric

and antisymmetric combinations of the corresponding atomic orbitals, as in the case

of Hlr (Section A.7).
Each molecular level can accommodate at most two electrons, of opposite

spins, according to the exclusion principle. The Li2 molecule has six electrons;

four occupy the ls molecular doublet, and the other two the lower level of the 2s

doublet.
According to this discussion, the amount of splitting depends strongly on the

internuclear distance of the two atoms in the molecule. The closer the two nuclei,

the stronger the perturbation and the larger the splitting. The splitting also depends

on the atomic orbital: The splitting of the 2p level is larger than that of the 2s

level, which is larger still than that of the ls level. The reason is that the radius

of the ls orbital, for instance, is very small, and the orbital is therefore tightly bound

to its own nucleus. It is not greatly affected by the perturbation. The same is not

true for the 2s and 2p orbitals, which have larger radii and are only loosely bound to

their own nuclei. It follows that, generally speaking, the higher the energy, the

greater the splitting incurred.
The above considerations may be generalized to a polyatomic Li molecule

of an arbitrary number of atoms. Thus in a 3-atom molecule, each atomic level is

split into a triplet, in a 4-atom molecule into a quadruplet, and so forth. The lith-
ium solid may then be viewed as the limiting case in which the number of atoms has
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r78 Metals II: Energy Bands in Solids

become very large, resulting in a gigantic lithium molecule. what has happened
to the shape of the energy spectrum? we can answer this on the basis of the above
discussion: Each of the atomic levels is split into N closely spaced sublevels, where
N is the number of atoms in the solid. But since N is so very large, about 1023,
the sublevels are so extremely close to each other that they coalesce, and form
an energy band. Thus the ls,2s, 2p levels give rise, respectively, to the ls, 2s, and
2p bands, as shown in Fig. 5.1(c).

To illustrate how close to each other the sublevels Iie within the bands, consider
the following numerical example. Suppose that the width of the band is 5 ev
(a typical value). The energy interval between two adjacent levels is therefore of
the order 5/1023:5 x 10-23 ev. Since this is an extremely small value, the
individual sublevels are indistinguishable, so we can consider their distribution as a
continuous energy band.

To recapitulate, the spectrum in a solid is composed of a set of energy bands.
The intervening regions separating these bands are energy gaps-i.e., regions of
forbidden energy-which cannot be occupied by electrons. Contrast this situation
with that of a free atom or a molecule, in which the allowed energies form a set
of discrete levels. This broadening of discrete levels into bands is one of the most
fundamental properties of a solid, and one we shall use often throughout this book.

The width of the band varies, but in general the higher the band the greater its
width, because, as we recall from the case of molecules, a high energy state
corresponds to a large atomic radius, and hence a strong perturbation, which is the
cause of the level broadening in the first place. By contrast, low energy states
correspond to tightly bound orbitals, which are affected but slightly by the perturba-
tion.

a,

Distance of nearest neighbors, ao

Fig. 5.2 The broadening of the 2s and 2p levels into energy bands in a lithium crystal
(ao is the Bohr radius, 0.53 A).
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Figure 5.2 shows 2s and 2p bands for metallic lithium plotted as functions of
the lattice constants a. Note that the band widths increase as a decreases, as is

to be expected, since the smaller the interatomic distance the greater the perturba-

tion. Note also that, for a < 6as, the 2s and 2p bands broaden to the point at

which they begin to overlap, and the gap between them vanishes entirely.
The crystal orbitals-i.e., the wave functions describing the electronic states

in the bands-extend throughout the solid, unlike the atomic orbitals, which are

localized around particular atoms, and decay exponentially away from those

atoms. ln this sense, we refer to solid wave functions as delocalized orbitals.

We shall see shortly that these orbitals actually describe electron waves traveling

in the solid. The concept of delocalization is a basic one. It is responsible for all

electronic transport phenomena in solids, e.g., electrical conduction.
We have already presented many concepts related to electronic states in a

crystalline solid. In the following sections we shall place these concepts on a firmer,

more mathematical basis by writing the Schrddinger equation and discussing the

properties of its solution. This will also lead to many interesting and novel con-

cepts which we shall discuss as we go along.

5.3 ENERGY BANDS IN SOLIDS; THE BLOCH THEOREM

The Bloch function

The behavior of an electron in a crystalline solid is determined by studying the

appropriate Schrodinger equation. This may be written as (Section A.2),

(s.l)

where Iz(r) is the crystal potential "seen" by the electron, and r/(r) and E are,

respectively, the state function and energy of this electron. The potential I/(r)
includes the interaction of the electron with all atoms in the solid, as well as its

interaction with other electrons (we will get back to this later). At this point we make

the important observation that the potential lz(r) is periodic. It has the same

l- *v' + rzt.l] /(r) : E,t,G),

Fig.5.3 The crystal potential seen by the electron.
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translational symmetry as the lattice, that is,

Z(r+R):V(r), (s.2)

where R is a lattice vector. Such a potential is shown schematically in Fig. 5.3.
According to the Bloch theorem, the solution of (5.1) for a periodic potential

Iz(r) has the form

/u(r) : eik''uu(r), (5.3)

where the function rzu(r) has the same translational symmetry as the lattice, that is,

uy(r*R):au(r). (5.4)

The vector k is a quantity related to the momentum of the particle, as we shall see.
we shall now give a physical proof of the Bloch theorem. Anyone interested

may pursue the more rigorous treatment in the references cited in the bibliography,
e.g., Seitz (1940). The proof presented here is chosen to bring out the physical
concepts with a minimum of mathematical detail. Returning to Eq. (5.1), it is always
possible to write its solution as

f(r): f(r)u(r),

where a(r) is periodic, as in (5.4), and where the function /(r) is to be determined.
However, since the potential z(r) is periodic, one requires that all observable
quantities associated with the electron also be periodic. In particular, the quantity
l/(r) I ', which gives the electron probability, must also be periodic.t This imposes
the following condition on /(r):

lf?+R)l':lfG)l''
The only function which satisfies this requirement for all R's is one of the
exponential form e'k''. This demonstrates that the solution of the Schrddinger
equation has the Bloch form (5.3), as we set out to prove.

The state function ry'* of the form (5.3), known as the Bloch function, has
several interesting properties.

a) It has the form of a traveling plane wave, as represented by the factor eik'',
which implies that the electron propagates through the crystal like a free particle.
The effect of the function rzu(r) is to modulate this wave so that the amplitude
oscillates periodically from one cell to the next, as shown in Fig. 5.4, but this does
not affect the basic character of the state function, which is that of a traveling wave.

flt is well known in quantum mechanics that the quantity lrl(.)l' ls the probability density,
and as such is physically measurable. However, the wave function ry'(r) itself is nor
physically measurable.
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Fig. 5.4 The Bloch function or wave. The smooth curve represents the wave eik' which
is modulated by the atomicJike "wiggly" function u1(r).

If the electron were indeed entirely free, the state function ry'* would be given

by (llV rt2) eik'r , that is, the function uu(r) is a constant. But the electron is not free,

since it interacts with the lattice, and this interaction determines the special

character of the periodic function u1.

b) Because the electron behaves as a wave of vector k, it has a deBroglie wavelength

), : 2nlk, and hence a momentum

P: ftk, (5.s)

according to the deBroglie relation. We shall call the vector the crystal momentum

of the electron, and discuss its properties in later sections-

-e; 
fne Bloch function ry'1 is a crystal orbital, as it is delocalized throughout the solid,

and not localized around any particular atom. Thus the electron is shared by the

whole crystal. This is, of course, consistent with property (a) above, in which we

described the electron as a traveling wave. Note also that the function ry'1is so chosen

that the electron probability distribution lt*l' is periodic in the crystal.

In the above discussion, we have stressed the analogy between a crystalline

electron and a free one; this is very helpful in understanding the properties of
electrons in crystals. One should not, however, jump to the conclusion that the

two are identical in their behavior. The Bloch-function electron exhibits many

intriguing properties not shared by a free electron, properties which result from the

interaction of the electron with the lattice'

Energy bands

The discussion has thus far centered on the state function; nothing has been said

about energy. We now turn to the energy spectrum which results from solving

the Schrodinger equation (5.1). Toward this end, we rewrite this equation in a

different form. Substituting for ry'l from the Bloch form (5.3), and eliminating the

factor e'k'', after performing the necessary operations, we arrive at

(s.6)

which is actually the wave equation for the periodic function a*(r). This is an

eigenvalue equation, like the Schrddinger equation, and can therefore be solved in a

l-L(v+,k)2+l2m
1

Iz(r) | uu(r) : Ek /k(r),
_t
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similar manner. Note that the operator in the brackets is an explicit function of k,
and hence both the eigenfunctions and eigenvalues depend on k, a fact we have
already used explicitly by labeling them with the vector k. An eigenvalue equation
leads, however, not to one but to many solutions. For each value of k, therefore,
we find a large number of solutions, giving a set of discrete energies Er,k, E2,u, . . . ,
as shown in Fig. 5.5.t Since these energies depend on k, they uury 

"ortinrously 
as

k is varied over its range of values. Each level leads to an energy band, as shown
in the figure. we shall henceforth write the energy eigenvalue as E,(k), and refer
to the subscript n as the band index, for obvious reasons.

Third band

Fig.5.5 Energy bands and gaps. The cross-hatched regions indicate energy gaps.

The number of bands is large-usually infinite-but only the lowest ones are
occupied by electrons. Each band covers a certain energy range, extending from
the lowest to the highest value it takes when plotted in k-space. The energy intervals
interspersed between the bands constitute the energy gaps, which are forbidden
energies that cannot be occupied by electrons.

Note also that, since k is a vector quantity, a diagram such as Fig. 5.5 is a
plot ofthe energy bands in only one particular direction in k-space. Ifthese bands
were plotted in a different k-direction, their appearance would change, in general.
A complete representation ofthe bands therefore requires one to specify the energy
values throughout the k-space. often this is accomplished, at least partially, by
drawing the energy contours in k-space for the various bands, as we shall do in the
following sections. We shall also show that the bands satisfy certain important
symmetry relations that enable us to restrict our considerations to relatively small
regions in k-space.

The energy bands which have emerged from this analysis are the same as
those discussed in the previous section, and in fact we can establish a one-to-one
correspondence between the energy bands and the atomic levels from which they
arise. The particular significance of the present results is that here we can classify

t In other words, the energy is a multivalued function of k.
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the electron states within the band according to their momentum as given by k.

Such a classification, which we shall find extremely useful, was not evident from
the last section.

The crystal potential

We turn now to the crystal potential lz(r) which acts on the electron. This
potential is composed of two parts: the interaction of the electron with the ion
cores, forming the lattice, and its interaction with other Bloch electrons moving

through the lattice. In metallic sodium, for example, an electron in the 3s band

interacts with the Na+ ions forming the bcc structure, as well as with other

eleclrons in this band. We may therefore write Iz(r) as the sum

V(r) : Y,1", -f V"(r), (5'7)

where the first term on the right represents the interaction with the ion cores

and the second the interaction with the electrons.
The ionic part may be written as

V,(r): fu,(r - R;),
j

where u,(r - R;) is the potential of an ion located at the lattice vector Rr, as in

Fig. 5.6(a). and the summation is over all the ions. The potential [(r) obviously

has the same periodicity as that of the lattice.

(5.8)

distance

Fig. 5.6 (a) The interaction of an electron with ion cores. The small dots represent
electrons. (The spatial distribution of the electrons is not shown accurately. They
actually tend to be positioned primarily around the ions.) (b) The spectrum of an Na atom
(left),andanNasolid(right).[AfterJ.C.Slater, PhysicsToday2l,43(1968).Notethe
broadening of the 3s level into a 3s band in the solid, and that this band lies almost
entirely above the potential barriers of the atoms, which facilitates the delocalization of
the electrons in this band. By contrast, electrons in the 2p level or band are so highly
constrained by the barriers that they are localized.

(b)(a)

Electron

lh ion
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The electronic potential V"(r), the so-called electron-electron interaction,
presents several hurdles which make its treatment very difficult. First, we can
evaluate this term only if we know the states for all other electrons, but these states
are not given in advance. In fact, they are the very states we are trying to find. Second,
the potential v"(r) is not strictly periodic, since the electrons are in constant
motion through the lattice. Third, a proper treatment should really consider the
dynamics of all the electrons simultaneously, not one electron at a time, as we have
done above. This is a typical example of the many-body problems which are often
encountered in solid-state physics.

In view of these difficulties, it is fortunate that the electron-electron interaction
turns out to be quite weak, for the reason given in Section 4.3, because this fact
makes the above difficulties far less serious than they could otherwise be. The
major effect of this interaction is that the electrons distribute themselves primarily
around the ions, so that they screen these ions from other electrons. This has the
additional effect of making the electron-ion interaction weak even at long range,
which is another fortunate circumstance.

So we can write an approximate expression for the potential as

V(r):\u"(r-R;),
J

(5.e)

where u"(r - Rr.) is the potential of the screened ion located at the lattice point
Rj. And precisely because this potential rs once again periodic, it satisfies the
requirements of the Bloch theorem. Figure 5.6(b) shows the crystal potential for Na.

In discussing the crystal potential, we have so far tacitly assumed that the atoms
are at rest at their lattice sites. However, they are not in fact stationary. They
are in a constant state of oscillation as a result of their thermal excitation, as
discussed in Chapter 3. Clearly, then, our assumption of a stationary lattice is an
approximation, and the question now is: How good is our approximation?
One may answer this pragmatically by pointing out that band structures calculated
on the basis of a stationary lattice are usually in good agreement with experiment,
except at temperatures close to the melting point of the solid. The reason the
stationary-lattice approximation seems to hold so well is that amplitudes of lattice
vibrations are much smaller than the interatomic distance at all temperatures,
even up to the melting point.i Therefore the distortion of the lattice, as seen by
the electron, is not appreciable.

5.4 BAND SYMMETRY IN K-SPACE; BRILLOUIN ZONES

The energy eigenvalues E,(k) for the bands have many useful symmetry properties
when these bands are plotted in k-space. Before broaching this subject, however,
let us say a few words about the Brillouin zones.

5.4

f The average amplitude of the
melting point is typically about

atomic oscillation due to thermal excitation at the
5/o of lhe interatomic distance.



5.4 Band Symmetry in k-space; Brillouin Zones

Brillouin zones

We first encountered Brillouin zones in our discussion of Bragg diffraction of
x-rays in Section 2.6. When one draws the normal planes which bisect the reciprocal
lattice vectors, the regions enclosed between these planes form the various
Brillouin zones.

Fig.5.7 The first three Brillouin zones of the square lattice: First zone (cross-hatched),
second zone (shaded) and third zone (screened). Numbers indicate indices of zones.

Consider, for instance, the square lattice whose reciprocal-also a square lattice

of edge equal to 2nla-is shown, in Fig. 5.7, which also shows the reciprocal
vectois G,, - G,, Gr, and - G2, etc., as well as the corresponding normal
bisectors. The smallest enclosed region c6ntered around the origin (the cross-

hatched area) is the first zone. The shaded area (composed of four separate half-

t0l0l

[010]
k,

ku

(a)

The first Brillouin zone for

(b)

(a) an fcc lattice, and (b) a bcc lattice.

I

I

I

-\

Fig. 5.8
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diamond-shaped pieces enclosed between the normal bisectors to Gr, Gr, and
G, + Gr, etc.) forms the second zone. Similarly, the screened area (eight parts)
forms the third zone. As higher-order bisectors are included, higher-order zones
are also formed, which may have quite complicated shapes.

However, all the zones haue the same erea, regardless of the complexity of the
zone. Thus we can see in the figure that the second zone has the same area as the
first, that is, (2tla)2 . The same is true for the third zone, and this can also be shown
to hold true for all zones. This equality of the areas of the Brillouin zones holds
true for all plane lattices, not just for square lattices.

In three dimensions, the zones are three-dimensional volumes. Figure 5.8
shows the first zone for fcc (a truncated octahedron) and bcc (a regular rhombic
dodecahedron) lattices. Higher-order zones in these lattices are somewhat compli-
cated in appearance and difficult to visualize; they will not concern us further here.

Let us now discuss the relation ofthe Brillouin zones to the band structure.

5.4

Symmetry properties

It can be shown that
properties.

i)

ii)

iii) E,(k) has the same

each energy band E,(k) satisfies the following symmetry

E,(k + G): E,(k)

E,(-k): E,(k)

rotational symmetry as the real lattice.

Note that these properties are the same as those obeyed by the dispersion
relations of lattice vibrations (Section 3.6), and can be proved in a similar manner-
i.e., by invoking the symmetry properties of the real lattice-as will be discussed
later in this section.

Property (i) indicates that E,(k) is periodic, with a period equal to the reciprocal
lattice vector. In other words, any two points in k-space related to each other by a
displacement equal to a reciprocal lattice vector have the same energy. For instance,
in Fig. 5.9(a), the energy is the same at points P ,, P r, and P., because P, is related
to P, by a translation equal to -Gr, Pt is related to P, by a translation -G,,
and both -G, and -G2 are reciprocal lattice vectors.

Figure 5.9(b) illustrates how, by using this translational symmetry, the various
pieces of the second zones may be translated by reciprocal lattice vectors to fit
precisely over the first zone. Each two areas connected by an arrow are equiualent.
The first and second zones are equivalent. Similarly, higher-order zones can be

appropriately translated to fit over the first zone. It follows, therefore, that we
may confine our attention to the first zone only, since this contains all the necessary
information.

The inversion property (ii) shows that the band is symmetric with respect to
inversion around the origin k : 0. Thus, in Fig. 5.9(a), the energy at point Pl
is equal to that at P,.

(5. l0)

(5.r r)
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(c) (d)

Fig. 5.9 (a) Translational symmetry of the energy E(k) in k-space for a square lattice.
(b) Mapping of the second zone into the first. (c) Rotational symmetry of E(k) in k-space
for a square lattice. (d) Energy contours in the first zone.

Property (iii) asserts that the band has the same rotational symmetry as the
real lattice. For instance, in a square lattice, the energy should exhibit the
rotational symmetry of the square. Since this is symmetric with respect to a
rotation by rl2 (and its multiples), it follows that in Fig. 5.9(c) the energies at
points Q,, Qr, and Q, are equal to that at point P,, because these points may be

obtained from P, by symmetry rotations. [Note that Q, is the same as P" of Fig.
5.9(a); this is so for a square lattice, but it does not hold good for other lattices.]

In Fig. 5.9(d) energy contours are sketched for a band in the first zone of a

square lattice. This figure satisfies the various symmetry properties described above.
The symmetry properties are particularly important because we can use them

to reduce the labor involved in determining energy bands. For example, with inver-
sion symmetry, we need'to know the band in only half of the first zone, and

rotational symmetry usually enables us to reduce this even further. In the case

of a square lattice, for example, only one-eighth of the zone need be specified
independently, as you may see, and the remainder of the zone can then be com-
pleted by using symmetry properties.

The labor-saving is even greater in three-dimensional cases. Thus, in the case

of a cubic lattice, the band need be specified independently in only l/48th of the
first zone.

(b)

ku
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Note that the symmetry properties discussed above refer to the same
band. They hold for every band separately, but do not relate one band to another.

Let us turn now to the proofs of the above properties. We shall only outline these
proofs here, leaving you to pursue the details in some of the advanced references
listed at the end of the chapter. consider first the translational property (i): The
Bloch function at the point k * G may be written as

/r.+c : ei(k*G)'tur*c : eik''.(eic''ux+c). (s.12)

Note that the factor inside the brackets of the last expression, which may be denoted
by u(r), is periodic in the r-space with a period equal to the lattice vector. That is,

o(r + R) - riG'(r+R)ru*c(r + R): e'c''r.rr,*"(r): (u)r.

This follows from the fact that u**" is periodic, ur6 riG'R : l, since G.R: n2n,
where n is some integer. The expression in the brackets in (5.12) has, therefore, the
same behavior as au(r) in Eq. (5.3). we have thus shown that the state function
ry'u*. has the same form as rlr p and consequently the two functions have the same
energy, since there is no physical basis for distinguishing between them.

Property (ii) may be established by noting that the Schrcidinger equation
analogous to (5.6), which corresponds to the point -k, is the same as the equation
obtained by writing the complex conjugate equation of (5.6). This means that the
corresponding eigenvalues are equal, that is, that E,(-k): EI(k). Since the
energy E,(k) is a real number, however, it follows that E,(-k): E,(k), which
is property (ii).

Property (iii) is derived by noting that if the real latrice is rotated by a symmetry
operation, the potential Iz(r) remains unchanged, and hence the new state function
obtained must have the same energy as the original state function. one
may show further that these new states correspond to rotations in k-space, and
this leads to the desired property.

5.5 NUMBER OF STATES IN THE BAND

we denoted the Bloch function by 0n,u,which indicates that each value of the band
index n and the vector k specifies an electron state, or orbital. we shall now show
that the number of orbitals in a band inside the first zone is equal to the number of
unit cells in the crystaL This is much the same as the statement made in connection
with the number of lattice vibrational modes (Section 3.3), and is proved in a like
manner, by appealing to the boundary conditions.

Consider first the one-dimensional case, in which the Bloch function has
the form

to@) : eik'uo(x). (5. l 3)
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If we impose the periodic boundary condition on this function, it follows that the

only allowed values of k are given by

(5.1 4)

where n:0, +1, *2, etc. [Note that uu(x) is intrinsically periodic, so the

condition uu(x * L) : uo?) is automatically satisfied.] As in Section 3.3, the

allowed values of k form a uniform mesh whose unit spacing is 2nlL. The

number of states inside the first zone, whose length is 2tla, is therefore equal to

(2rla)l(2rlL):Lla:N,

where N is the number of unit cells, in agreement with the assertion made

earlier.
A similar argument may be used to establish the validity of the statement in

two- and three-dimensional lattices.
It has been shown that each band has N states inside the first zone. Since

each such state can accommodate at most two electrons, of opposite spins, in
accordance with the Pauli exclusion principle, it follows that the maximum number

of electrons that may occupy a single band is 2N. This result is significant, as it will
be used in a later section to establish the criterion for predicting whether a solid
is going to behave as a metal or an insulator.

5.6 THE NEARLY-FREE-ELECTRON MODEL

In Section 5.3 and 5.4 we studied the general properties ofthe state functions, and

of the energies of an electron moving in a crystalline solid. To obtain explicit
results, however, we must solve the Schr<idinger equation (5.1) for the actual
potential 7(r) in the particular solid of interest. But the process of solving the
Schrcidinger equation for any but the simplest potentials is an arduous and time-
consuming task, inundated with mathematical details. Although this is essential

for obtaining results that may be compared with experiments, it is preferable to
start the discussion of explicit solutions by using rather simplified potentials. The

advantage is that we can solve the Schrcidinger equation with only minimal
mathematical effort and thus concentrate on the new physical concepts involved.

In the present section we shall treat the nearly-free'electron (NFE) model,

in which it is assumed that the crystal potential is so weak that the electron behaves

essentially like a free particle. The effects of the potential are then treated by the

use of perturbation methods, which should be valid inasmuch as the potential is

weak. This model should serve as a rough approximation to the valence bands

in the simple metals, that is, Na, K, Al, etc.

2nk:n-.
L
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In the following section, we shall treat the tight-binding model, in which the
atomic potentials are so strong that the electron moves essentially around a single
atom, except for a small interaction with neighboring atoms, which may then be
treated as a perturbation. This model lies at the opposite end from the NFE model
in terms of the strength of crystal potential involved, and should serve as a rough
approximation to the narrow, inner bands in solids, e.g., the 3d band in transition
metals.

The empty-lattice model

The starting point for the NFE model is the solution of the Schrcidinger equation
for the case in which the potential is exactly zero,i.e., the electron is entirely free.
However, we also require that the solutions satisfy the symmetry properties of
Section 5.4, which are imposed by the translational symmetry of the real lattice.
This leads to the so-called empty-lattice model.

Third band

2rr0r2r
aa ai
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model, showing translational symmetry and the various bands. (c) Dispersion curves in
the empty-lattice model (first zone only).
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For a one-dimensional lattice, the state functions and energies for the empty-
lattice model are

,l,q) : #r'o',

Ei}]:H,

(5. r 5)
t: "
lt --r.- -

'r'"- ; )''/.)

t vYo {L) (5' 16)
and

where the superscript 0 indicates that the solutions refer to the unperturbed
state (Section A.7). The energy E[f] which is plotted versus k in Fig. 5.10(a)

exhibits a curve in the familiar parabolic shape. Figure 5.10(b) shows the result
of imposing the symmetry property (i) of Section 5.4. Segments of the parabola
of Fig. 5.10(a) are cut at the edges of the various zones, and are translated by

multiples of G : Zrla in order to ensure that the energy is the same at any two
equivalent points. Figure 5.10(c) displays the shape of the energy spectrum when

we confine our consideration to the first Brillouin zone only. [Conversely,
Fig.5.l0(b) may be viewed as the result of translating Fig. 5.10(c) by

multiples of G.l
The type of representation used in Fig. 5.10(c) is referred to as the reduced-

zone scheme. Because it specifies all the needed information, it is the one we shall

find most convenient. The representation of Fig. 5.10(a), known asthe extended-

zone scheme, is convenient when we wish to emphasize the close connection between

a crystalline and a free electron. However, Fig. 5.10(b) employs the periodic-

zone scheme, and is sometimes useful in topological considerations involving the

k-space. All these representations are strictly equivalent; the use ofany particular
one is dictated by convenience, and not by any intrinsic advantages it has over the

others.

The nearly-free-electron model

How is the energy spectrum of Fig. 5.10(c) altered when the crystal potential is

taken into account, or "turned on?" Figure 5.ll(a) shows this. The first and

second bands, which previously touched at the point A (and,4') in Fig. 5.10(c)

are now split, so that an energy gap is created at the boundary of the Brillouin
zone. A similar gap is created at the center of the zone, where bands 2 and 3 pre-

viously intersected (point B in Fig. 5.10c) and also at point C, where bands 3 and 4
previously intersected. Thus, in general, in the empty-lattice model, energy gaps

are created in k-space wherever bands intersect, which occurs either at the center

or the boundaries of the BZ. At these points the shape of the spectrum is strongly
modified by the crystal potential, weak as this may be. (In effect, what the crystal
potential has accomplished is to smooth over the sharp "corners" present in the

band structure of the empty lattice.)
In the remainder of the zone, however, the shape of the spectrum is affected

very little by the crystal potential, since this is assumed to be weak. In that region
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Fig. 5.11 (a) Dispersion curves in the nearly-free-electron model, in the reduced-zone
scheme. (b) The same dispersion curves in the extended-zone scheme.

of the k-space the bands essentially retain their parabolic shape inherited from the
empty-lattice model of Fig. 5.10(c), and the electron there behaves essentially like
a free electron.

By comparing Fig. 5.10(c) and Fig. 5.ll(a), one notes that a hint of a band
structure is almost present even in the empty-lattice model, except that the gaps
there vanish, since the bands touch at the zone boundaries. This vanishing is
foreseen, of course, since no energy gaps are expected to appear in the spectrum
of a free particle. The point is that even a weak potential leads to the creation of
gaps, in agreement with the results of Sections 5.2 and 5.3.

Figure 5.ll(b) shows the band structure for the NFE model, represented
according to the extended-zone scheme, which should be compared with
Fig.5.l0(a). Note that, except at the zone boundaries at which gaps arecreated,
the dispersion curve is essentially the same as the free-electron curve.

We made the above assertions without proofs; we shall now outline proofs on
the basis of the perturbation method of Section A.7. Suppose, for instance, that we
seek to find the influence ofthe crystal potential on the first band in Fig.5.l0(c).
When we treat the potential V(x) as a perturbation, the perturbed energy E,(k)
up to the second order of the potential is given by

-Toraa
(b)

-Toraa
(a)

(5.17)

Here the subscript I refers to the first band, which is the one of interest, and the
superscript 0 refers to the empty-lattice model of Eqs. (5.15) and (5.16). The second
term on the right side of (5.17), which is the first-order correction, is the average
value of the potential. The third term, giving the second-order correction, involves
summing over all states r?, k, except where these indices are equal to the state l, k
under investigation.

Er(k) : r{0r1t; + (dl}l vl,t[u)) * Zr_firor4ffi
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First we note that the first-order correction is equal to

( /1:t I v t,t\l,l) : +[" 
ik'v(x)eio'dx : jlrato.,

which is the average value ofthe potential over the entire lattice. It is independent

of k, and hence it is merely a constant. Its effect on the spectrum of Fig. 5.10(c)

is simply to displace it rigidly by a constant amount, without causing any change

in the shape of the energy spectrum. Since this term does not lead to anything of
interest to us here, it will be set equal to zero, which can be accomplished by shifting
the zero energy level.

We must therefore consider the second-order correction in Eq. (5.17). We

first assert that the quantity (n, k' I V I l, k> can be shown to vanish except when

k' : k, where both k and k'are restricted to the first zone. That is, the only states

which are coupled to the l,k state by the perturbation are those lying directly
above this state, as shown in Fig. 5.12.

Fig. 5.12 Only those states lying directly above the state ry'lo? in k-space are coupled to
it by the perturbation.

This assertion rests on the translational symmetry of the crystal potential
V (x).1 Furthermore, since the energy difference in the denominator of the third

t An arbitrary potential V (x) can always be expanded as a Fourier series

V(x):ZrV,,r'L",
where the summation is over all the allowed k's. The Fourier coefficient Z1 is given by

fLv*: (tlL) 
J- 

v@r-in'd*.

But if Z(x) is periodic, as is the case in a crystal, then only the values k : G contribute to
the above summation; that is, V*: O fot k + C. A periodic potential therefore has the
expansion

V (x) : Ze Vo r'o".

It can be shown that the bracket in the numerator of (5.17) is the Fourier coefficient
V1,,-p, and hence this bracket vanishes except for k' - k: G.

o k!
d
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term in (5.17) increases rapidly as the band ,4 rises, the major effect on band I arises
lrom its coupling to band 2. We may therefore write

E{k) = rtorlr; 1 I V - r,t,l'
EW() - EP\kl '

where V-2,1, is the Fourier component of the potential, that is,

V-zrto:

An explicit expression for E,(k) can be obtained by substituting the values for
4o)(t) ano fl0)1t;: namely 4')(t) : h2k2t2m, ana S0r1t; = h\k - zrrta)2t2m.
[Note that if 0 < k < nla, then the second band is obtained by translating that part
of the free-electron curve lying in the interval - 2nla < k < - nf a, as seen in
Fig. 5.10(b), and hence the above expression for Z!o)(k).1 But this is not really
necessary, because if the potential is weak, thenl V_r,,o | 

2 is very small, and the sec-
ond term in (5.18) is negligibly small compared with rhe firsr. In other words,
Er(k) - Eto)(k), and the effect of the lattice potential is negligible.

There is, however, one point in k-space at which the above conclusion breaks
down: the point k: nla at the zone edge. At this point the energies Eto)(k) and
Eo)(k) are equal [recall that bands I and2 touchthere; see Fig. 5.10(c)], the de-
nominator of the perturbation term in (5. I 8) vanishes, and hence the perturbation
correction becomes very large. Since the above perturbation theory presumes the
smallness of the correction, it follows that this theory cannot hold true in the
neighborhood of the zone edge. In this neighborhood, one should instead invoke
the degenerate perturbation theory, in which both bands I and 2 are treated
simultaneously, and on an equal footing. The resulting energy values are (Ziman,
le63),

E"(k): +{Elo)(/.) + Eo)(k) I t(Eto)(/c) - E(:)(k))2 + 4lv_2,t,12)r/2}, (5.19)

where the plus sign corresponds to the deformed upper band-i.e., band 2-near
the edge of the zone, and the minus sign refers to the deformed lower band-
i.e., band l.

Now let us substitute the values of Eto)(k) and f,ft(e into (5.19) and plot
E*(k) and E-(k)in the neighborhood of the zone edge. We obtain the spectrum
shown in Fig.5.ll(a). In particular, the energy Eap Es is equal to the difference
E*(k) - E-(k) evaluated at the point k : nlq. Using (5.19), we readily find that

En : 2l V-zonl. (s.20)

That is, the energy gap is equal to twice the Fourier component of the crystal
potential. In effect, band I has been depressed by an amount equal to I V _r,,,1
and band 2 has been raised by the same amount, leading to an energy gap given
by (s.20).

5.6

(5. r 8)

Ilv ale+i(2n/a)x dx.
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The same formula (5.19) may also be used to find the energy gap that arises

at the center of the zone, at the intersection between bands 2 and 3, except that
we now replace Eto)(k), Ey)(k) by Ef)(k) and trto)(k), respectively. We also

replace the potential term by Y-+nto. This leads to the splitting of bands 2and3,
as shown in Fig.5.l1(a), with an energy gap of 2lV-ont,l. Obviously the proce-

dure can be used to find both the splitting ofthe bands and the corresponding gaps

at all appropriate points.
In addition to the above results, two qualitative conclusions emerge from the

analysis. First, the higher the band, the greater its width;this is evident from re-

ferring back to the empty lattice model in Fig.5.l0(a), since the energy there

increases as k2. Second, the higher the energy, the narrower the gap; this follows
from the fact that the gap is proportional to a certain Fourier component of the

crystal potential, but note that the order of the component increases as the energy

rises (from V-ro,o to V-an1o in our discussion above). Since the potential is

assumed to be well behaved, the components decrease rapidly as the order increases,

and this leads to a decrease in the energy gap. It follows therefore that, as we

move up the energy scale, the bands become wider and the gaps narrower; i.e.,

the electron behaves more and more like a free particle. This agrees with the qualita-

tive picture drawn in Section 5.2.

Since the greatest effect of the crystal potential takes place near the points in
k-space at which two bands touch, let us examine the behavior there more closely.

If one applies the degenerate perturbation formula (5.17) to the splitting of bands

2 and 3 at the center of the zone, one finds that, for small k (k 4 nla),

and

E3(k): Eu t lv-ontol + fi;o*',

Er(k) : E, - lV-ootol - ! ot',
ztllo

(s.21)

(s.22)

(s.23)

results

where the parameter a is given by

- 4Eua: I + ,i
and Eu:h2(2nla)2l2ms is the energy of point B in Fig.5.10(c). These

are very interesting for several reasons.

a) Equation (5.21) shows that, for an electron near the bottom of the third band,

E - kz (ignoring the first two terms on the right, since they are simply constants),

which is similar to the dispersion relation of a free electron. In other words, the

electron there behaves like a free electron, with an effective mass rz* given by

m* : mold,
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which is different from the free mass. Referring to (5.23), one sees that the effective
mass increases as the energy gap Es increases. Such a relationship between rz*
and Eo is familiar in the study of semiconductors.

b) Equation (5.22) shows that, for an electron near the top of the second band,
E - - k2, which is like a free electron, except for the surprising fact that the
effective mass is negative. Such behavior is very unlike that ofa free electron, and
its cause lies, of course, in the crystal potential. The phenomenon of a negative
effective mass near the top of the band is a frequent occurrence in solids,
particularly in semiconductors, as we shall see later (Chapter 6).

We have thus far confined ourselves to a one-dimensional lattice, but we may
extend this treatment to two- and three-dimensional lattices in a straight-
forward fashion. We find again, as expected, that starting with the empty-lattice
model, the "turning on" of the crystal potential leads to the creation of energy
gaps. Furthermore, these gaps occur at the boundaries of the Brillouin zone.

5.7 THE ENERGY GAP AND THE BRAGG REFLECTION

In discussing the NFE model, we focused on energy values. But perturbation also
modifies state functions, and we shall now study this modification. If we apply
the perturbation theory to the one-dimensional empty lattice, we find that the
state function of the first band in Fig. 5.ll(a) is given by

tr,* :,t \o), + E#fuW vt":l, (s.24)

where-again because of the form of the potential and also the energy difference
in the denominator-the perturbation summation has been reduced to one term
only, involving the state function of the second band r!{ro,}.

The state functions r/toi and {tl2o) refer to a free electron; {L?}- "'r'represents a wave traveling to the right, while /tf) - si(k-2tla)x represents a wave
traveling to the left (note that I k | < nla). The effect of the lattice potential is then
to introduce a new left-traveling wave in addition to the incident free wave.
This new wave is generated by the scattering of the electron by the crystal potential.
If ft is not close to the zone edge, however, the coefficient of lrto) in (5.24) is
negligible. That is,

5.7

tr,*=,i!:i: fi"'.., (s.2s)

and the electron behaves like a free electron. The effects of the potential are
negligible there, which is in agreement with the conclusions reached in Section 5.6.

Near the zone edge, however, the energy denominator in the correction term
in (5.24) becomes very small, and the perturbation term large, which means that
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Fig. 5.13 Spatial functions r! * ar,drlt -.

distribution has a low energy. The function f *(x) therefore corresponds to the

energy at the top of band l, that is, point A1 in Fig' 5'11(a)'

By contrast, the function t -@) - sinnlax, depositing its electron mostly

between the ions (as shown in Fig. 5.13), corresponds to the bottom of band 2

in Fig. 5.ll(a), that is, poinl Ar. The gap arises, therefore, because of the two

different distributions for the same value k = nla, the distributions having different

energies.
Scrutinizing (5.26) from the viewpoint of scattering' we see that at the zone

edge, k : nla, the scattering is so strong that the reflected wave has the same

amplitude as the incident wave. As found above, the electron is represented there

byi standing wave, cos nlax or sin nf ax, very unlike a free particle. An interesting

result of this is that the electron, as a standing wave' has a zero velocity at

k : ila. This is a general result which is valid at all zone boundaries, and one

which we shall encounter often in the following sections'

We have seen that the periodic potential causes strong scattering at k: nla.

Recall from Section 3.6 on lattice vibrations that this strong scattering arises as

a result ofthe Bragg diffraction at the zone edge. In the present situation, the wave

diffracted is the electron wave, whose wavelength is )' : 2nlk'

the form (5.24) becomes invalid. As stated in Section 5.6, one must then use the

dege.,erate perturbation theory, in which the state functions rlt\o) and {\ol
are treated on an equal footing. One finds that, at the zone edge itself,

l.
* *(x) : -| lrl,"o,),.{x) + rlt(z?,lt.G, : jn(ei(Etatx + e- i(E/a)x). (5.26)

\/z

The function ,L *@) - cos (z/a)x, and hence the probability is proportional to

lf *(r) 12 - cos2(ftla)x. Such a state function distributes the electron so that it is
piled predominantly at the nuclei (recall that the origin x : 0 is at the center of
an ion) [see Fig. 5.13], and since the potential is most negative there, this

{ nJ' ){ -'12
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In higher-dimension lattices, the Bragg condition is satisfied along all
boundaries of the Brillouin zone, as discussed in Section 2.6, and this results in
the creation of energy gaps along these boundaries, in agreement with the conclu-
sions of the last section.

5.8 THE TIGHT.BINDING MODEL

In the tight-binding model, it is assumed that the crystal potential is strong, which
is the same as saying that the ionic potentials are strong. It follows, therefore,
that when an electron is captured by an ion during its motion through the lattice,
the electron remains there for a long time before leaking, or tunneling, to the next
ion [see Fig. 5.14(a), which also shows that the energy of the electron is appreciably

5.8

j-l .l i+|

/l a\
\,, I 9j

r\
\',-' I

j I

1\

.l

\

Energy
level

(b)

(c)

Fig. 5.14 The tight-binding model. (a) The crystal potential. (b) The atomic wave
functions. (c) The corresponding Bloch function.

lower than the top of the potential barrier]. During the capture interval, the elec-

tron orbits primarily around a single ion, i.e., its state function is essentially
that of an atomic orbital, uninfluenced by other atoms. Most of the time the
electron is tightly bound to its own atom. The mathematical analysis to be devel-
oped must reflect this important fact.

As we said in Section 5.6, the TB (tight-binding) model is primarily suited to
the description of low-lying narrow bands for which the shell radius is much smaller
than the lattice constant. Here the atomic orbital is modified only slightly by the
other atoms in the solid. An example is the 3d band, so important in transition metals.

Let us begin, then, with an atomic orbital, f ,(x), whose energy in a free atom
is E,. We wish to examine the effects of the presence of other atoms in the solid.
The index y characterizes the atomic orbital (for the atomic shell of interest).
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First, the one-dimensional case: It is necessary to choose a suitable Bloch function,
and while the choice is not unique, the following offers a reasonable form.

(s.27)

where the summation extends over all the atoms in the lattice. The coordinate
X, specifies the position of theT'h atom. That is, Xr:.74, where a is the lattice

constant. The function d,6 - X;) is the atomic orbital centered around the

i'h atom; it is large in the neighborhood of Xr, but decays rapidly away from this
point, as shown in Fig.5.l4(b). By the time the neighboring site at X;*r (or
X;- ,) is reached, the function d "Q - X;) has decayed so much that it has become

almost negligible. In other words, there is only a little overlap between neighboring
atomic orbitals. This is the basic assumption of the TB model. The factor Nr/2

is included in (5.27) to ensure that the function ry'u is normalized to unity (if the

atomic orbital @, is so normalized).
Let us turn now to the properties of the function ry'o(x), as defined by (5.27),

First, it is necessary to ascertain that this function is a Bloch function, namely, that

it can be written in the form (5.3). This can be established by rewriting $.27)
in the form

{r@) : ,-ik(x x)o,(x - x),

where it is now readily recognized that the factor defined by the summation is

periodic, with a period equal to the lattice constant a. Thus the function ry'1(x)

has indeed the desired Bloch form, i.e., it describes a propagating electron wave,

as shown in Fig 5.la(c).
Note also that near the center of the 7'h ion, the function ry'*(x) redirces to

{o@) = e'u', fu(x - X) - S"(x - X ). (5.28)

That is, the Bloch function is proportional to the atomic orbital. Thus in the

neighborhood of the j'h ion, the crystal orbital behaves much like an atomic

orbital, in agreement with the basic physical assumption of the TB model.
The function ry'*(x) therefore satisfies both the mathematical requirement of

the Bloch theorem and the basic assumption of the TB model, and as such is a

suitable crystal orbital. It will be used now to calculate the energy of the band.
The energy of the electron described by ry'o is given, according to quantum mech-

anics, by

*oG):fii,r'^'g"(x-X),

i*'*'i,

E(k): (0olHl,lto), (s.2e)
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where H is the Hamiltonian of the electront. Substituting for r!1, from (5.27),
one has

(N - t)l2
E(k) : I e'o*'(Q,(x)lHld,@ - x)),

j= -N12

where we have arbitrarily put Xi,: O in (5.30). By splitting the term./: 0 from
the others, one may write the above expression as

E(k): (d,(x)lH ld,(x)) *\.'eikxi16,(x)lH lg"(x- X)), (5.32)

The first term gives the energy ,t . 
"t'""t.on 

would have if it were indeed entirely
localized around the atom,/ : 0, while the second term includes the effects of the
electron tunneling to the various other atoms. The terms in the summation are
expected to be appreciable only for nearest neighbors-that is,7: I and j : -l-
because as 7 increases beyond that point, the overlap between the corresponding
functions and the state function at the origin becomes negligible (Fig.5.lab).
Note also that, since the property of electron delocalization is included entirely
in the second term of (5.32), it is this term which is responsible for the band
structure, and as such is of particular interest to us here.

To proceed with the evaluation of E(k), according to (5.32), we need to examine
the Hamiltonian H more closely. The expression for this quantity is given by

5.8

(5.30)

where the double summation overT and.7'extends over all the atoms in the lattice.
Note that each term in the summation is a function of the difference Xi - Xi,,
and not of X, and X, individually. Therefore, for each particular choice of 7',
the sum overTyields the same result, and sinceT'can take N different values, one
obtains N equal terms, which thus leads to

h2 d2
H : - =-- -- 

* V(x),
zmo clx-

(5.3 r )

(5.3 3)

where Z(x) is the crystal potential. Writing this potential as a sum of atomic
potentials, one has

V(x):\a(x - X).
J

(5.34)

f The Hamiltonian 11 is simply the quantum operator which represents the total energy
of theparticle.Thus 11 : -1h2 l2m)Y2 + V(r),wherethefirsttermontherightrepresents
kinetic energy and the second term potential energy. The expression (5.29) for the
energy is very plausible, since the term on the right is the average value of the energy in
quantum mechanics.
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In using this to evaluate the first term in Eq. (5.32), we shall find it convenient to
split V(x) into a sum of two terms

V (x) : u(x) + V'(x), (s.35)

where u(x) is the atomic potential due to the atom at the origin and V'(x) is that
due to all the other atoms. These potentials are plotted in Figs. 5.15(a) and (b),

j: -t j:o j:1

Fig. 5.f5 The splitting of the crystal potential into (a) an atomic potential and (b) the
remainder of the crystal potential.

respectively. Note in particular that V'(x) is small in the neighborhood of the

origin. The first term in (5.32) may now be written as

( d,(x) I H I d,(x)) : (r,,,,ll_ !*#+ D(x)]l o,t,l)

+ (d,(x) lV'(x) ld,(x)). (s.36)

The first term on the right is equal to E,, the atomic energy, since the operator
involved is the Hamiltonian for a free atom. The second term is an integral which
can be evaluated, and will be denoted by the constant -B' Explicitly,

(s.37)

where the minus sign is introduced so that B is a positive number.t Note that B

is a small quantity, since the function {,(x) is appreciable only near the origin,
whereas V'(x) is small there. Collecting the two terms above, we have

( d,(x) I H I d,(x)) : E" - P.

p : - !o:<.lv'(x)s,@)dx,

f The integral in (5.37) is negative because V'(x) is negative (Fig. 5.15b)

(5.38)
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Let us now turn to the interaction term, i.e., the summation in (5.32). The
term involving interaction with the nearest neighbor at X | : a involves an
integral which may be written as

h2 d2
(6,G1lH l0,G - d)) : (0"k)l - *"A?

* u(x - a)|6,G - a)> + (d,(x) lV'(x - a)le,@ - a)). (s.39)

The first rerm on the right is equal to E,(@,(x)10,G- a)), which is a

negligible quantity, since the two functions d,(x) and @,(x - a), being centered
at two different atoms, do not overlap appreciably. The second term on the right
of (5.39) is a constant which we shall call -7, that is,

- a) dx. (5.40)

Note that 7, though small, is still nonvanishing because V'(x - a) is appreciable
near the origin, that is, x : 0 (although not at x : a). The parameter 7 is called
the otserlap integral, since it is dependent on the overlap between orbitals centered
at two neighboring atoms.

The integral arisingfrom the termT: -l in the sum in (5.32), which is due
to the atom on the left side of the origin, yields the same result as (5.39) because

the atomic functions are symmetric.
Substituting the above results into (5.32), and restricting the sum to nearest

neighbors only, one finds

E(k):E'-0-Y 2'eikxi,
j= |

which may thus be written as

(5.4r)

E(k):E"-P-2ycoska. (s.42)

This is the expression we have been seeking. It gives band energy as a function of
k in terms of well-defined parameters which we can evaluate from our knowledge
of atomic energy and atomic orbitals.

Equation (5.42) may be rewritten more conveniently as

Jolr,t 
v'(x - a) Q"@

E(k) : Eo + 4y t^' (+), (5.43)

(s.44)
where

Eo:Eu-fr-2Y.

The energy E(k) is plotted versus k in Fig.5.l6, where k is restricted to the first
zone [although E(k) is obviously periodic in k, in agreement with property (i)



5.8 The Tight-Binding Model 203

of Section 5.4]. We see, as expected, that the original atomic level E, has broadened

into an energy band. The bottom of the band, located at k: 0, is equal to Eo'

and its width is equal to 4y.

Fig.5.16 The dispersion curve in the tight-binding model.

Note that the bottom of the band Eo is lower than the atomic energy E,,

which is to be expected, since one effect of the presence of the other atom is to

depress the potential throughout the system (refer to Fig. 5.14a). In addition to

Eo, the electron has an amount of energy given by the second term in (5.a3). This

is a kinetic energy, arising from the fact that the electron is now able to move

through the crystal.
Note also that the bandwidth, 4y, is proportional to the overlap integral.

This is reasonable, because, as we saw in Section 5.2, the greater the overlap the

stronger the interaction, and consequently the wider the band.

When the electron is near the bottom of the band, where k is small, one may

make the approximation sin (kalz) - kaf2, and hence

E(k) - Eo: ya2k2, (s.45)

which is of the same form as the dispersion relation of a free electron. An electron

in that region of k-space behaves like a free electron with an effective mass

h2 I**:*i (s.46)

It is seen that the effective mass is inversely proportional to the overlap integral y.

This is intuitively reasonable, since the greater the overlap the easier it is for the

electron to tunnel from one atomic site to another, and hence the smaller is the

inertia (or mass) of the electron. Conversely, a small overlap leads to a large

mass, i.e., a sluggish electron. Of course, in the TB model, the overlap is

supposed to be small, implying a large effective mass.

Note, however, that an electron near the top of the band shows unusual

behavior. If we define k' : nla - k, and expand the energy E(k) near the

E(k)
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maximum point, using (5.43), we arrive at

5.8

which shows that the electron behaves like a particle of negatioe effective mass

E(k') - E-u* : -t, O'.

h2
m* : - --i-.

o-y

(s.47)

(s.48)

This, you recall, is in agreement with the results obtained on the basis of the NFE
model.

The above treatment can be extended to three dimensions in a straight-
forward manner. Thus for a sc lattice, the band energy is given by

E(k): (s.4e)

where El is the energy at the bottom of the band. The energy contours for this
band, in the k, - k, plane, are shown in Fig. 5.17(a), and the dispersion curves
along the U00l and U I ll directions are shown in Fig. 5.17(b). The bottom of the
band is at the origin k : 0, and the electron there behaves as a free particle with an
effective mass given by (5.a6). The top of the band is located at the corner of the
zone along the I I l] direction, that is, at lnf a, rla, nlaf; the electron there has a
negative effective mass given by (5.a8). The width of the band is equal to l2y.

J1n/a

Fig. 5.17 (a) Energy contours for an sc lattice in the tight-binding model. (b) Dispersion
curves along the [00] and [ll] directions for an sc lattice in the TB model.

In this treatment of the TB model, we have seen how an atomic level broadens
into a band as a result of the interaction between atoms in the solid. In this manner,
each atomic level leads to its own corresponding band, and each band reflects the
character of the atomic level from which it has originated.

Es + 4y [',,'(?) *'^,(ry).' ,(ry))

0

(b)(a)
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In conclusion, we see that both the NFE and TB models lead to the same

qualitative results, although the models start from opposite points of view. The

principal results arrived at in both models are: (a) Energy gaps appear at zone

boundaries. (b) An electron near the bottom of the band behaves like a free

particle with a positive effective mass. (c) An electron near the top of the band

behaves like a free particle with a negative effective mass'

5.9 CALCULATIONS OF ENERGY BANDS

In the last few sections we have discussed some methods of calculating energy

bands. However, these methods-the NFE and TB models-are too crude

to be useful in calculations of actual bands which are to be compared with
experimental results. In this section we shall consider therefore some of the com-

mon methods employed in calculations of actual bands. Because this subject is

an advanced one, requiring a considerable background in quantum mechanics,

as well as meticulous attention to almost endless mathematical details, our discus-

sion will be brief, primarily qualitative, and somewhat superficial. We shall

nevertheless try to give the reader a glimpse of this fundamental subject in the hope

that he may pursue it further, if he so desires, by referring to books listed in the

bibliography at the end of the chapter.
Several different schemes for calculating energy bands have been used' Let

us now discuss them individuallY.

The cellular method

The cellular method was the earliest method employed in band calculations (Wigner

and Seitz, 1935). It was applied with success to the alkali metals, particularly
Na and K; we shall use Na as an example.

The Schrddinger equation whose solution we seek is

(s.50)

where I/(r) is the crystal potential and ry'* the Bloch function. Here we are interested

only in the 3s band. It is at once evident that this equation cannot be solved

analytically. We must therefore use an approximation procedure.

When we use the cellular method, we divide the crystal into unit cells; each

atom is centered at the middle of its cell, as shown in Fig. 5.18. Such a cell, known
as the Wigner-Seitz (WS) cel/, is constructed by drawing bisecting planes normal
to the lines connecting an atom A, say, to its neighbors, and "picking out" the
volume enclosed by these planes. (The procedure for constructing the WS cell,
you may note, is analogous to that used in constructing the Brillouin zone in
k-space.) For Na, which has a bcc structure, the WS cell has the shape of a regular

dodecahedron (similar to Fig. 5.8b, but in real space).

l-h'v'n
L 2mo

rG)] /- : E(k) f r,



Metals II: Energy Bands in Solids

In order to solve (5.50), we now assume that the electron, when in a
particular cell, say ,4, is influenced by the potential of the ion in that cell only.
The ions in other cells have a negligible effect on the electron incell A because each
of these cells is occupied, on the average, by another conduction electron which
tends to screen the ion, thereby reducing its potential drastically. To ensure that
the function ry'u satisfies the Bloch form, it is necessary that zo-where r! y: eik',ut

-be periodic, that is, u1 has the same points on opposite faces of the cell, e.g.,
points P, and P2 in Fig. 5.18(a).

/, aO

(a) (b)

Fig. 5.18 (a) The WS cell. (b) The wave function ry'o at the bottom of the 3s band in Na
versus the radial distance, in units of the Bohr radius.

The procedure is now clear in principle: We attempt to solve (5.50) in a single
cell, using for Iz(r) the potential of afree ion, which can be found from atomic
physics. In Na, for instance, I/(r) is the potential of the ion core Na+. It is still
very difficult, however, to impose the requirements of periodicity on the function
for the actual shape of the cell (the truncated octahedron), and to overcome this
hurdle wigner and Seitz replaced the cell by a wS sphere of the same volume as
the actual cell, i.e., one employs a W S sphere. Using these simplifying assumptions
concerning the potential and the periodic conditions, one then solves the
Schrcidinger equation numerically, since an analytical solution cannot usually
be found. The resulting wave function r!o al the bottom of the band, k:0, is
shown in Fig. 5.18(b). The wave functions at other values of k near the bottom of
the band may then be approximated by

V. = #"'o,0o, (s.51)

which has the Bloch form.
The procedure is also capable of yielding the energy E(k). The energy Eo

of the bottom of the band is obtained from the same calculations which give ry'o,
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and the energy at any other point k is obtained by using

(s.52)

where the wave function ry'1 is substituted from (5.51). The energy found in this

manner was used by Wigner and Seitz to evaluate the cohesive energy, and the

results are in satisfactory agreement with experiment.

One noteworthy feature of these results is the shape of the wave function in
Fig. 5.18(b). The wave function oscillates at the ion core, but once outside the core

the function is essentially a constant. This constancy of the wave function

holds true for almost 907" of the cell volume. Thus the wave function behaves like

a plane wave, aS seen from (5.51), over most of the cell, and hence over most of the

crystal. Looking at this in terms of the potential, we see that where the function is

a plane wave, the potential must be a constant. Thus the effectiue potential

acting on the electron is essentially a constant, except in the region at the ion core

itself. Viewing the motion of the electron in the crystal as a whole, we conclude

that the electron moves in a region of constant potential throughout most of the

crystal; only at the cores themselves does the electron experience any appreciable

potential. This surprising result explains why the conduction electrons in Na, for
ixample, may be regarded as essentially free electrons. Mathematically, it is a
consequence of the periodic conditions imposed on the wave function in the cell,

and this is particularly apparent when one realizes that the wave function for the

3s electron in a free Na atom is very unlike ry'o outside the ion core. The flatness of
ry'o is thus due to the imposition of the periodic conditions, and not to any special

pioperty of the ionic potential.t The effect of the periodic condition is to cancel

out the ionic potential outside the core, and thus render the potential a constant.

We shall find this result very useful in the development of other methods of band

calculation.
Despite its usefulness, the cellular method is greatly oversimplified, and is not

currently much in use. One of its chief disadvantages is that when one replaces

the WS cell by a sphere, one ignores the crystal structure entirely. All anisotropic

effects, for instance, are completely masked out.

The augmented-plane wave (APW) method

The APW method (Slater, 1937) uses the results of the cellular method, but is so

formulated as to avoid its shortcomings. Since the effective crystal potential was

found to be constant in most of the open spaces between the cores, the APW
method begins by assuming such a potential (Fig. 5.19), which is referred to as the

t Th. b.r"d'..y conditions require that the derivative of the function ry'6 vanish at the

surface of the WS sphere (why?). Thus the function is flat near the surface of this sphere,

as shown in Fig. 5.18(b).

E(k) : (*-, - fio'+ /(r),*-),
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Fig.5.19 The potential and wave function in the ApW method.

mufin-tin potential. The potential is that of a free ion at the core, and is strictly
constant outside the core. The wave function for the wave vector k is now taken
to be

wk: ,, ,",

,ar",
(s.53)

where r" is the core radius. Outside the core the function is a plane wave because
the potential is constant there. Inside the core the function is atomJike,
and is found by solving the appropriate free-atom schrcidinger equation. Also,
the atomic function in (5.53) is chosen such that it joins continuously to the plane
wave at the surface of the sphere forming the core; this is the boundary condition
here.

The function wu does not have the Bloch form, but this can be remedied
by forming the linear combination

(5.s4)

where the sum is over the reciprocal lattice vectors, which has the proper form.
The coefficients ak+c are determined by requiring that ry'o minimize the energy.i
In practice the series in (5.54) converges quite rapidly, and only four or five terms-
or even less-suffice to give the desired accuracy.

The APW method is a sound one for calculating the band structure in
metals, and has been used a great deal in the past few years. It incorporates the
essential features of the problem in a straightforward and natural fashion.

The pseudopotential method

Yet another method popular among solid-state physicists for calculating band struc-
ture in solids is the pseudopotential method, which is distinguished by the manner

5.9

* o: la**" \rk+Gt
G

t The "best" linear combination (5.54) is that which makes the energy as low as possible.
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in which the wave function is chosen. We seek a function which oscillates rapidly
inside the core, but runs smoothly as a plane wave in the remainder of the open

space of the WS cell. Such a function was chosen in the APW method

according to (5.53), but this is not the only choice possible. Suppose we take

w*:0t-Lo,r,,
i

(s.5s)

where {1 is a plane wave and ui an atomic function. The sum over f extends

over all the atomic shells which are occupied. For example, in Na, the sum

extends over the ls, 2s, and 2p shells. The coefficients a; are chosen such that the

function lu1, represoDting a 3s electron, is orthogonal to the core function u,.l

By requiring this orthogonality, we ensure that the 3s electron, when at the core,

does not occupy the other atomic orbitals already occupied. Thus we avoid violat-
ing the Pauli exclusion principle.

The function wu has the features we are seeking: Away from the core, the atomic
functions u, are negligible, and thus w1 = 0*, a plane wave. At the core, the atomic
functions are appreciable, and act so as to induce rapid oscillations, as shown in
Fig. 5.20.

(a) G)

Fie.5.20 The pseudopotential concept. (a) The actual potential and the corresponding
wave function, as seen by the electron. (b) The corresponding pseudopotential and
pseudofunction.

If one now substitutes wo into the Schrddinger equation

E(k)w*, (s.56)

f Two functions ry', and {2are said to b orthogonal if the integral .[tr*rlt2dlr:0.
This concept of orthogonality is very useful in quantum mechanics. The atomic functions
in the various atomic shells are all mutually orthogonal.

lh2t__
I 2*o

v'+ v)*o:
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and rearranges the terms, one finds that the equation may be written

5.10

in the form

(5.57)

(5.58)

I * v' + v')ox: E(k) o*,

where
V':V_

These results are very interesting: Equation (5.57) shows that the effective potential
is given by Iz, while (5.58) shows Lhat V'is weaker than Y, because the second
term on the right of (5.58) tends to cancel the first term. This cancellation of the
crystal potential by the atomic functions is usually appreciable, often leading to a
very weak potential I/'. This is known as the pseudopotential. Since I/' is so weak,
the wave function as seen from (5.57) is almost a plane wave, given by {*, and is
called the pseudofunction.

The pseudopotential and pseudofunction are illustrated graphically in
Fig. 5.20(b). Note that the potential is quite weak, and, in particular, the singularity
at the ion core is entirely removed. Correspondingly, the rapid "wiggles" in the
wave function have been erased, so that there is a smooth plane-wave-like function.

Now we can understand one point which has troubled us for some time:
why the electrons in Na, for instance, seem to behave as free particles despite
the fact that the crystal potential is very strong at the ionic cores. Now we

see that, when the exclusion principle is properly taken into account, the
effective potential is indeed quite weak. The free-particle behavior, Iong taken
to be an empirical fact, is now borne out by quantum-mechanical calculations.
The explanation of this basic paradox is one of the major achievements of the
pseudopotential method. This method has also been used to calculate band
structure in many metals and semiconductors (Be, Na, K, Ge, Si, etc.) with
considerable success.

The APW and pseudopotential methods, as well as other related systems,
require much numerical work which can feasibly be carried out only by modern
electronic computers. It often takes a whole year or more to develop the
necessary program and perform the calculations for one substance on a large com-
puter!

5.10 METALS, INSULATORS, AND SEMICONDUCTORS

Solids are divided into two major classes: Metals and insulators. A metal-or
conductor-is a solid in which an electric current flows under the application of
an electric field. By contrast, application of an electric field produces no current
in an insulator. There is a simple criterion for distinguishing between the two
classes on the basis of the energy-band theory. This criterion rests on the following
statement: A band which is completely full carries no electric current, eoen in the

Lb,(r,lVlu,).
i
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presence of an electric field. It follows therefore that a solid behaves as a metal

only when some of the bands are partially occupied. The proof of this statement

will be supplied later (Section 5.13), but we shall accept it for the time being as an

established fact.
Let us now apply this statement to Na, for example. Since the inner bands

ls,2s,2p are all fully occupied, they do not contribute to the current. We may

therefore concern ourselves only witl the topmost occupied band, the ualence

band. In Na, this is the 3s band. / As we saw in Section 5.5, this band can

accommodate 2N. electrons, wher^e { is ttre total number of primitive unit cells.

Now in Na, a Bravais bcc lpttice, each cell has one atom, which contributes one

valence (or 3s) electron'.- ThEi;fbre 
-it 

e lotai 'number 
oJ Valence electrons is N",

and as these eloctrons occupy the band, only half of it is filled, as shown in Fig.

5.21(a). Thus sodium behaves like a metal because its valence band is only
partially filled.

(a) O) (c) (d)

Fig.5.21 The distribution of electrons in the bands of (a) a metal, (b) an insulator,
(c) a semiconductor, and (d) a semimetal.

In a similar fashion, we conclude that the other alkalis, Li, K, etc., are

also metals because their valence bands-the 2s, 4s, etc., respectively-are only
partially full. The noble metals, Cu, Ag, Au, are likewise conductors for the same

reason. Thus in Cu the valence band (the 4s band) is only half full, because each

cell in its fcc structure contributes only one valence electron.

As an example of a good insulator, we mention diamond (carbon). Here the

top band originates from a hybridization of the 2s and 2p atomic states (Section

A.8), which gives rise to two bands split by an energy gap (Fig. 5'2lb') Since

these bands arise from s and p states, and since the unit cell here contains two atoms,

each of these bands can accommodate 8N" electrons. Now in diamond each atom

contributes 4 electrons, resulting in 8 valence electrons per cell' Thus the

!?
)
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valence band here is completely full, and the substance is an insulator, as stated
above.t

There are substances which fall in an intermediate position between metals
and insulators. If the gap between the valence band and the band immediately
above it is small, then electrons are readily excitable thermally from the former to
the latter band. Both bands become only partially filled and both contribute to
the electric condition. Such a substance is known as a semicortductor. Examples
are Si and Ge, in which the gaps are about I and 0.7 ev, respectively. By contrast,
the gap in diamond is about 7 ev. Roughly speaking, a substance behaves as a
semiconductor at room temperature whenever the gap is less than 2 ev.

The conductivity of a typical semiconductor is very small compared to that of
a metal, but it is still many orders of magnitude larger than that of an insulator.
It is justifiable, therefore, to classify semiconductors as a new class of substance,
although they are, strictly speaking, insulators at very low temperatures.

In some substances the gap vanishes entirely, or the two bands even overlap
slightly, and we speak of semimetals (Fig. 5.21d). The best-known example is Bi,
but other such substances are As, Sb, and white Sn.

An interesting problem is presented in this connection by the divalent ele-
ments, for example, Be, Mg, Zn, etc. For instance, Be crystallizes in the hcp
structure, with one atom per cell. Since there are two valence electrons per celi,
the 2s band should completely fill up, resulting in an insulator. In fact, however,
Be is a metal-although a poor one, in that its conductivity is small. The reason
for the apparent paradox is that the 2s and 2p bands in Be overlap somewhat,
so that electrons are transferred from the former to the latter, resulting in
incompletely filled bands, and hence a metal. The same condition accounts for the
metallicity of Mg, Ca, Zn, and other divalent metals.

A substance in which the number of valence electrons per unit cell is odd is
necessarily a metal, since it takes an even number of electrons to fill a band
completely. But when the number is even, the substance may be either an
insulator or a metal, depending on whether the bands are disparate or over-
Iapping.

f The case of hydrogen is of special interest. Although it is gaseous at atmospheric
pressure' hydrogen solidifies at high pressure. But the familiar solid hydrogen is an insula-
tor, having two atoms per unit cell, which causes the complete filling oi tt 

" 
t. band. Theory

predicts, however, that at very high pressure (-2 megibars), soila hydrogen undergoei
a crystal structure transformation and a concomitant change to a metallic state. Many
experimenters are currently attempting to observe this transformation, and tentative
successes have been reported, but definitive results are still lacking at the time ol writing.
Even diamond has been reported to undergo transition to thJmetallic state at high
pressure (- 1.5 megabars). Simultaneously a structural phase transformation to a body-
centered tetragonal structure occurs. The decrease in the lattice constant caused by the
pressure is about 17/".
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5.11 DENSTTY OF STATES-

The density of states for electrons in a band yields the number of states in a

certai-rr energy range. This function is important in electronic processes,

particularly in transport phenomena. When we denote the density-of-states

function by g(E), it is defined by the relation

g(E) dE: number of electron states per unit volume in the energy range

(E,E + dE). (5.s9)

This definition of g(E) is analogous to that of the phonon density of states g(ar),

so our discussion here parallels that presented in connection with g(o). (See

Sections 3.3 and 3.7; particularly 3.7.) To evaluate g(E) one applies the

definition (5.59): One draws a shell in k-space whose inner and outer surfaces are

determined by the energy contours E(k) : E and E(k) : E + dE, respectively,

as shown in Fig. 5.22. The number of allowed k values lying inside this shell then
gives the number of states which, when divided by the thickness of the shell dE,
yields the desired function g(E).

Fie. 5.22 Concentric shells in k-space used to evaluate the density of states 9(E)'

f t is evident that g(E) is intimately related to the shape of the energy contours,

and hence the band structure. The complexities of this structure are reflected

in the form taken by g(E). Let us first evaluate g(E) for the case in which the

dispersion relation for electron energy has the standard form

213

h2k2D-
2m*

(s.60)
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As we have seen earlier, such a dispersion relation often holds true for those states
lying close to the bottom of the band near the origin of the Brillouin zone. The
energy contours corresponding to (5.60) are clearly concentric spheres surrounding
the origin. The resulting density-of-states shell is then spherical in shape, as
illustrated by shell ,4 in Fig. 5.22, and since this is spherical, its volume is given by
4nk2 dk, where k is the radius and dk the thickness of the shell. Recalling from
Section 3.3 that the number of allowed k values per unit volume of k-space is
ll(2n)3, it follows that the number of states Iying in the shell-i.e., in the energy
range(E,E+dE)-ts

we may convert the right side by writing it in terms of E, the energy, rather than
in terms of k, by using (5.60). We then find that

Number of states : 
# 47tk2 dk.

Number or states : # (T)3t2 nrrzar.

Comparing this result with the definition (5.59), we infer that

c@) : lo(T)''' u'''

(5.61)

(s.62)

In order to take into account the spin degeneracy-i.e., the fact that each k state
may accommodate two electrons of opposite spins-we multiply this expression
by 2, which yields

s@):*(#)''"',' (s.63)

This shows that g(E)- Ert', which means that the curve g(E) has a parabolic
shape (Fig. 5.23). The function g(E) increases with E because, as we see irom Fig.
5.22,the larger the energy the greater the radius, and hence the volume of the shell,

Et

Fig. 5.23 The density of states.
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and consequently the larger the number of states lying within it. Also note that

S(E) - m*3/2. That is, the larger the mass the greater the density of states.
The result (5.63) is very useful, and will be used repeatedly in subsequent

discussions, but note that its validity is restricted to that region in k-space in which
the standard dispersion relation (5.60) is satisfied. As the energy increases, a point
is reached at which the energy contours become nonspherical-e.9., shell B in
Fig. 5.22, in which region Eq. (5.63) no longer holds. One must then resort to a

more complicated formula to evaluate S@). As a result, the shape of g(E) is no
longer parabolic at large energy, as shown in Fig. 5.23, the actual shape being
determined by the dispersion relation E : E(k) of the band. Note also that, at

sufficiently large energies, the shell begins to intersect the boundaries of the zone,

e.g., shell C in Fig. 5.22,in which case the volume of the shell begins to shrink, with
a concomitant decrease in the number of states. The density of states of the shell
plummets, and continues to decrease as the energy increases, until it vanishes

completely when the shell lies entirely outside the zone, as shown in Fig. 5.23.

The energy at which g(E) vanishes marks the top of the valence band. The density
of states remains zero for a certain energy range beyond that, this range marking
the energy gap, until a new energy band appears, with its own density of states.

In simple metals, such as alkalis and noble metals, the standard form (5.60)

holds true for most of the zone until the energy contours come close to the

boundaries of the zone. It follows therefore that for these substances the

expression (5.63) applies throughout most of the energy band, except close to the

top of the band.
It is sometimes useful to have an expression for the density of states in the energy

range lying close to the top ofthe band. This can be derived readily ifthe band there
can be represented by a negative effective mass, as is usually the case (see Section
3.6). We may then show, by following a procedure analogous to that in deriving
(5.63), that

(s.64)

where E, is the top of the valence band (note that here E < E,). Thus the density
function 9(E) has an inverted parabolic shape, where the parabola is at the

top of the band. (See Fig. 5.23.).
Figure 5.24 illustrates situations in which bands overlap each other. Figure

5.2a@) represents a circumstance typical of divalent metals, in which the top
of a band is at higher energy than the bottom of the next-higher band. Figure
5.24(b) shows the overlap of the 4s and 3d bands in transition metals. The 3d

band, narrow and high, lies in the midst of the wide and flat 4s band.
According to definition, the quantity S@) dE gives the number of states lying

in the energy range (E, E + dE). The number of electrons actually occupying this

s@) : * (l#)',',',,r, - E)''|"
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Fig. 5.24 (a) The shape of the density of states when two bands overlap each other as, e.g.,
in divalent metals. (b) The overlap of the 3d and 4s bands in transition metals.

range of energy is then given by

dn(E) : f(E) s(E) dE, (s.65)

where /(E) is the Fermi-Dirac distribution function, f (E): (l + ,(E-Er)tka'r7-t,
discussed in Section 4.6. Expression (5.65) follows from the fact rhar since g(E) dE
gives the number of available states, and /(E) the probability that each of these
is occupied by an electron, then the product f (E) S@) dE must give the number of
electrons present in that energy range.

5.T2 THE FERMI SURFACE

In Section 4.7 we discussed the Fermi surJace (FS) in connection with the free-
electron model. There we saw that the significance of this surface in solid-state
physics derives from the fact that only those electrons lying near it participate in
thermal excitations or transport processes. Here we shall consider the Fermi sur-
face again, and now we shall incorporate tne effects of the crystal potential. The
significance of the FS remains unchanged, but its shape, in some cases, may be
considerably more complicated than the spherical shape of the free-electron model.
We shall now consider the effects of the crystal potential on the shape of the FS,
while in later sections we shall see how this change may influence the physical
properties of the crystal. Experimental determination of the FS will be considered
in Section 5.19.

As we recall, the FS is defined as the surface in k-space inside which all the states
are occupied by valence electrons.t All the states lying outside the surface are

t In Section 4.7 we discussed the FS in velocity space. However, for a free-like electron,
the velocity is given by v : hklm*. Thus v and k are proportional to each other, and one
could equally well speak of the FS in k-space, provided an appropriate change in scale
were made.

(b)(a)
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empty. The definition is strictly valid only at absolute zero, T : 0'K, but, as we

saw in Section 4.6, the effect of temperature on the FS is very slight, and the
surface remains sharp even at room temperature or higher. The shape of the FS

is determined by the geometry of the energy contours in the band, since the FS is

itself an energy contour, where E(k) : Er, Er being the Fermi energy. (Because

of this, the FS should display the same rotational symmetry as the lattice.)

Fermi surface

Fig.5.25 The evolution of the shape of the FS as the concentration of valence or
conduction electrons increases.

Figure 5.25 illustrates the evolution ofthe shape ofthe FS as the concentration
of valence electrons increases. For small n, only those states lying near the bottom
of the band at the center of the zone are populated, and the occupied volume is a
sphere in k-space, which is therefore bounded by a spherical FS. As r increases

and more states are populated, the "Fermi volume" expands, and so does the FS.

This surface, which is spherical near the origin, begins to deform gradually as r
increases, following the distortion in the contours at large energies (as discussed

previously) as seen in Fig. 5.25. The distortion in the shape of the FS may become
quite pronounced, particularly as the FS approaches the boundaries of the zone.

The distortion is even greater when the surface intersects the boundaries, as will
be discussed later in this section.

The alkali metals Li, Na, and K crystallize in the bcc structure, whose Brillouin
zone is a regular rhombic dodecahedron (Fig. 5.8b). As we saw in Section 5.6, the
valence band is half filled. The FS is still far from the boundaries, and since the
standard dispersion relation holds well throughout most of the zone, it follows that
the FS in these substances is essentially spherical in shape. Experiments confirm this,
showing that in Na and K the distortion of the FS from sphericity is of the order
of l0-3.

The noble metals Cu, Ag, and Au crystallize in the fcc structure. The shape

of the BZ here is that of a truncated octahedron (Fig. 5.26). Here again the
valence band is only half-filled, and consequently the FS, being far from the zone
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Fig. 5.26 The FS in noble metals. The surface protrudes toward the zone faces in the
Illl] directions.

boundaries, should be essentially spherical, which is substantially true for most of the
FS. However, along the (111) directions, the FS comes close to the zone
boundaries, because of the shape of the zone, and as a result the surface suffers
strong distortion in that region. As seen in Fig. 5.26, the FS protrudes along the
(lll) directions so much as to touch the zone face. [n effect the zone
boundaries have "pulled" the FS, giving it the shape shown in the figure-a sphere
with eight "necks" protrudingin the (lll) directions. In this respecr rhe FS
in the noble metals is quite different from that in the alkali metals.

The position of the Fermi level Er for various classes of solids is illustrated
in Fig. 5.27. Figure 5.27(a) illustrates the density of states and the position of E.

(a) (b)

Fie.5.27 The position of the Fermi energy in (a) a monovalent metal, and (b) a
divalent metal.

for a typical monovalent metal, where only half the band is filled, and the substance
acts as a conductor. Figure 5.27(b) shows a divalent metal. Here the bands over-
lap to some extent, and the number of valence electrons is so large that the FS

spills over into the higher band. Figure 5.28 shows an insulator, in which the

c(D
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Fig. 5.28 The position of the Fermi energy in an insulator.

valence band is completely filled and the Fermi level lies somewhere in the energy

gap.
We shall now determine the Fermi energy Eo for the case in which the

standard form(5.60) holds. As seen above, this applies to the alkali metals and, to a
lesser extent, to the noble metals as well. By its very definition, the Fermi energy

satisfies the relation (at T : 0"K)

s(E)dE: n, (s.66)

because the integral on the left gives the number of states from the bottom of the

band, E: 0, right up to the Fermi level. This number must be equal to the

number of electrons, which is the meaning of (5.66). lf we substitute for
g(E) from (5.63), perform the necessary integration (which can be readily
accomplished), and solve for E., we find that

I.'

E,: 
*(3n2n)2t3,

(s.67)

which is the result quoted previously in the case of the free-electron model
(Section 4.7). Refer to Table 4.1 for a list of Fermi levels, and note that Eo is
typically of the order of a few electron volts.

Let us now turn to the FS in polyvalent metals. Suppose that the number of
valence electrons is sufficiently large so that the FS intersects the boundaries of
the zone, as shown in Fig. 5.29(a). In constructing the FS here, we used the empty-
lattice model, so the crystal potential is set equal to zero. The FS is now seen to
extend over two zones. The part of the FS lying in the first zone is repeated in

Fig. 5.29(b). Note that it is composed of the four sides of a diamond-shaped

figure. Figure 5.29(c) replots the part of the FS lying in the second zone using the

reduced-zone scheme. We see that it is composed of the sides of four half-bubble-

shaped figures. When viewed in the various individual zones, the shape of the FS

appears quite complicated, even for a free electron, belying its original simplicity.
Of course, if one uses the extended-zone scheme, the original spherical shape of
Fig. 5.29(a) may be reconstructed, but this is not immediately apparent from
Fig. 5.29(b) or (c) individually. If we now turn on a weak crystal potential, the
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Fig. 5.29 The Harrison construction. (a) The FS in the emptyJattice model using the
extended-zone scheme. (b) The FS in the first zone. (c) The FS in the second zone.
(d) Band overlap.

shape of the FS in the two zones is affected only slightly, the effect being primarily
to round off the sharp corners. The point here is that the complicated FS's usually
observed in polyvalent metals are not necessarily the result of strong crystal
potentials (as was once thought to be the case). They may be due largely to the
crossing of the zone and the piecing together of the various parts of the FS. (The
procedure for reconstructing Fermi surfaces on the basis of the empty-lattice
model is known as the Harrison conslruction.)

Figure 5.29(d) shows the energy bands in the two zones plotted in two different
directions. The two bands overlap. The rop of the first band along the Illl]
direction is higher than the bottom of the second band in the [100] direction.
The Fermi level crosses both bands, and both contribute to the conduction process.

It is important to note here that the Fermi level crosses the lower band
(on the left in Fig. 5.29d) in a region in which the curvature of the band is down-
ward, i.e., a region of negative effective mass. As we shall see in Section 5.17,
such a situation is best described in terms of holes.

Figure 5.29(d) illustrates what is known as the two-band model for a metal.

Fermi surface

Second zone



5.13 Velocity of the Bloch Electron

The electric current is transported by carriers in two bands: Electrons in the
higher band, holes in the lower. We shall exploit this model to full advantage in
Section 5.18.

Fig. 5.30 The Fermi surface of beryllium.

Finally, Fig. 5.30 shows the FS for Be (known also as the Be coronet).
Complicated as this appears to be, the surface is quite similar to the shape

obtained using the Harrison construction. Note the hexagonal symmetry, expected

as a consequence of the hexagonal crystal structure of Be.

5.T3 VELOCITY OF THE BLOCH ELECTRON

Now let us studythe motion of the Bloch electrons in solids. An electron in a state

ry'* moves through the crystal with a velocity directly related to the energy of that
state. Consider first the case of a free particle. The velocity is given by

v : plmo, where p is the momentum. Since P : frk, it follows that, for a free

electron, the velocity is given by

(s.68)

i.e., the velocity is proportional to and parallel to the wave vector k, as shown in
Fie.5.3l(a).

(a) (b)

Fig. 5.31 The velocity of (a) a free electron, and (b) a Bloch electron.

For a Bloch electron, the velocity is also a function of k, but the functional
relationship is not as simple as (5.68). To derive this relationship, we use a well-known

hk
v:-r

mo
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formula in wave propagation. That is, the group velocity of a wave packet is
given by

v : Vr rrr(k), (5.6e)

where co is the frequency and k the wave vector of the wave packet. Applying this
equation to the electron wave in the crystal, and noting the Einstein relation
ot : Elh, we may write for the velocity of the Bloch electron

vk E(k), (5.70)

which states that the velocity of an electron in state k is proportional to the gradient
of the energy in k-space. [Equation (5.70) can also be derived more rigorously
by writing the quantum expression for the velocity of the probability wave asso-
ciated with the Bloch electron and finding the quantum expectation value; see

Mott (1936).1 We assume implicitly that we are dealing here with the valence
band, and hence the band index has been suppressed, although it should be clear
from the derivation that (5.70) is valid in any band.

Since the gradient vector is perpendicular to the contour lines, a fact well
known from vector analysis, it follows that the velocity v at every point in
k-space is normal to the energy contour passing through that point, as shown in
Fig. 5.31(b). Because these contours are in general nonspherical, it follows that the
velocity is not necessarily parallel to the wave vector k, unlike the situation of a free
particle.

Note, however, that near the center of the zone, where the standard dispersion
relation E: h2k2 l2m* is expected to hold true, the relation (5.70) leads to

hk

m*

which is of the same form as the relation for a free particle, (5.68), except that mo
has been replaced by m*, the effective mass. This is to be expected, of course, since
we have often stated that a Bloch electron behaves in many respects like a free
electron, except for the difference in mass. [t follows that near the center of the zone
v is parallel to k, and points radially outward, as shown in Fig. 5.31 (b). It is near
the zone boundaries at which the energy contours are so distorted that this simple
relationship between v and k is destroyed, and so one must resort to the more
general result (5.70).

Note also that when an electron is in a certain state ry'*, it remains in that state
forever, provided only that the lattice remains periodic. Thus as long as this situa-
tion persists, the electron will continue to move through the crystal with the same
velocity v, unhampered by any scattering from the lattice.t In other words,

Iv--
h

(5.7 l)

t See the remarks about the propagation of waves in periodic lattices (Section 4.5).



Velocity of the Bloch Electron 223

the velocity of the electron is a constant. Any effect the lattice may exert on the
propagation velocity has already been included in (5.70) through the energy E(k).

Deviations in the periodicity of the lattice would, of course, cause a scattering

of the electron, and hence a change in its velocity. For example, an electron moving
in a vibrating lattice suffers numerous collisions with phonons, resulting in a pro-

found influence being exerted on the velocity. Also, external fields-electric or
magnetic-lead to change in the velocity of the electron. We shall discuss these

effects in the following sections.

Fig.5.32 (a) The band structure, and (b) the corresponding electron velocity in a one-
dimensional lattice. The dashed line in (b) represents the free-electron velocity.

Figure 5.32(a) shows a typical one-dimensional band structure, and

Fig. 5.32(b) shows the corresponding velocity, which in this case reduces to

(s.72)

that is, the velocity is proportional to the slope of the energy curve. We see that as k
varies from the origin to the edge ofthe zone, the velocity increases at first linearly,
reaches a maximum, and then decreases to zero at the edge of the zone. We wish
now to explain this behavior on the basis of the NFE model, particularly the

seemingly anomalous decreases in the velocity near the edge of the zone. The
following discussion is closely related to the discussion in Section 5.7.

Near the zone center, the electron may be adequately represented by a single
plane wave t* - eik', and hence v : hklmo, explaining the linear region of Fig.
5.32(b). However, as k increases, the scattering of the free wave by the lattice

introduces a new left-traveling wave whose wave vector k' : k - 2nla, and which

(a)

(b)

taE
"- hak'



Metals II: Energy Bands in Solids 5.13

is to be superimposed on the original right-traveling wave k. Therefore the electron
is now represented by the wave mixture

0r, = eik, + be- i(2tla-klx (5.73)

where the coefficient 6 is found from perturbation theory (Eq. 5.2q. The velocity
of this wave, according to quantum mechanics, is given by

(s.74)

where the first term on the right is the contribution of the right-traveling wave,
while the second term is the contribution of the left-traveling wave. At small k,
thq coefficient 6 is small, and u is given essentially by hklmo, as stated above. As k
increases, however, the coefficient of the scattered wave increases, and so the
second term in (5.74) becomes appreciable. Since the second term is negative
(k < 2nla), its effect tends to cancel the first term. Near the zone boundaries, the
coefficient D is so large that the resulting cancellation is greater than the increase
in the first term, which leads to a net decrease in the velocity, as we have seen.

At the zone boundary itself (k : nla), the scattered wave becomes equal
to the incident wave as a result of the strong Bragg reflection, that is, D: l,
which, when substituted into (5.74), yields u : 0, in agreement with Fig. 5.32(b).
We anticipated this result in Section 5.7, in which we found that at the zone
edge the electron is represented by a stdnding wave.

Similar applications of the NFE model in two and three dimensions explain
why the relationship between v and k near the zone boundaries differs considerably
from that for a free particle (see the problem section at the end of this chapter).

Now we shall derive a result which was used earlier in Section 5.10, namely,
that a completely filled band carries no electric current. To establish this, we note
that according to (5.70)

v(-k) : -v(k), (s.75)

where v(k) and v(-k) are the velocities of electrons in the Bloch states k and

- k, respectively (see Fig. 5.33). This equation follows from the symmetry relation

u:^o -bl']-('l-o\,ftts mo\a /

Fig.5.33 v(-k): -v(k).
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E(-k) : E(k), which was established in Section 5.4.

all electrons in the band is given by
The current density due to

J: (5.76)

where I/ is the volume, -e the electronic charge, and the sum is over all states

in the band. But as a consequence of (5.75), the sum over a whole band is seen to
vanish, that is, J :0, with the electrons' velocities canceling each other out in
pairs.

5.I4 ELECTRON DYNAMICS IN AN ELECTRIC FIELD

When an electric field is applied to the solid, the electrons in the solid are accelerated.

We can study their motions most easily in k-space. Suppose that an electric field
d is applied to a given crystal. As a result, an electron in the crystal experiences

a force F : - eE, andhence a change in its energy. The rate of absorption of energy

by the electron is

l_--( - e) ) v(k),
yk

dE(k\

;: - eE'v.

dkh*:-eE:F.

(s.77)

where the term on the right is clearly the expression for the power absorbed by a
moving object. If we write

dB(k) dk

i: vkE(k).7,

and use the expression (5.70) for v, then substitute these into (5.77), we find the

surprisingly simple relation P=fii.
J

r=h * (5.78)

This shows that the rate of change of k is proportional to-and lies in the same

direction as-the electric force F (i.e., opposite to the field E, by virtue of the

negative electron charge). This relation is a very important one in the dynamics
of Bloch electrons, and is known as the acceleration theorem.

Equation (5.78) is not totally unexpected. We have already noted the fact
that the vector ftk behaves like the momentum of the Bloch electron (Section 5.3).

In that context, Eq. (5.78) simply states that the time rate of change of the

momentum is equal to the force, which is Newton's second law.

Let us now consider the consequences of the acceleration theorem, starting

E=ikh
L,ah -Jh'- h(h-r ld. hn^''

-1h K*'-n 'JL
ak = h& kh-' Yvt*: h th-r)A
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with the one-dimensional case. Equation (5.78) may be written in the form

(s.7e)

showing that the wave vector k increases uniformly with time. Thus, as r increases,
the electron traverses the k-space at a uniform rate, as shown in Fig. 5.34. If we

Fig. 5.34 (a) The motion of an electron in k-space in the presence of an electric field
(directed to the left). (b) The corresponding velocity.

use the repeated-zone scheme, the electron, starting from k : 0, for example,
moves up the band until it reaches the top (point ,4) and then starts to descend along
the path 8C. If we use the reduced-zone scheme, then once the electron passes

the zone edge at,4, it immediately reappears at the equivalent point A', then con-
tinues to descend along the palh A'B'C' . Recall that, according to the translational-
symmetry property of Section 5.4, the points B', C' are respectively equivalent
to the points B, C, so that we may use either of the two schemes.

Note that, in the presence of an electric field, the electron is in constant
motion in k-space; it is never at rest.

Also note that the motion in k-space is periodic in the reduced-zone
scheme, since after traversing the zone once, the electron repeats the motion.
The period of the motion is readily found, on the basis of (5.79), to be

2nh 2nhr : Fa: "s, .. (5',80)7 r
Figure 5.34(b) shows the velocity of the electron as it traverses the k-axis.

Starting at k :0, as time passes, the velocity increases, reaches a maximum,

dkF
dt h'

(b)
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decreases. and then vanishes at the zone edge. The electron then turns around
and acquires a negative velocity, and so forth. The velocity we are discussing is the
velocity in real space, i.e., the usual physical velocity. It follows that a Bloch
electron, in the presence of a static electric field, executes an oscillatory periodic
motion in real space, very much unlike a free electron. This is one of the
surprising conclusions of electron dynamics in a crystal.

Yet the oscillatory motion described above has not been observed, and the
reason is not hard to come by. The period 

" 
of (5.80) is about l0-s s for usual

values of the parameters, compared with a typical electron collision time
z: l0-la s at room temperature. Thus the electron undergoes an enormous
number of collisions, about 10e, in the time of one cycle. Consequently the oscilla-
tory motion is completely "washed out."t

Fig.5.35 The motion of an electron in a two-dimensional lattice in the presence of an
electric field (a) according to the reduced-zone scheme, (b) according to the repeated-zone
scheme.

Let us now consider the situation in two dimensions (Fig. 5.35). When an

electric force F is applied, the electron, starting at some arbitrary point P, moves

in a straight line in k-space, according to (5.78). As it reaches the zone edge at
point P,, it reappears at P',, continues on to Pr, and reappears at Pi. lt follows
the crisscross path shown in Fig. 5.35(a). If we used the repreated-zone scheme

instead (Fig. 5.35b), then the path of the electron in k-space would simply be the
straight line P PlP'; P'; (note that Pi is equivalent to Pr, P! to Pr, etc.).
This is one situation in which the repeated-zone scheme proves to be more
convenient than the extended-zone scheme.

5.15 THE DYNAMICAL EFFECTIVE MASS

When an electric field is applied to a crystal, the Bloch electron undergoes an

tl-eo Esaki and his collaborators are currently attempting to build a device for which
T 4t, by growing highly pure superlattices for which a= 50 - 100A. Such a Bloch
oscillator may be used as an oscillator or amplifier.

(b)(a)
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acceleration. This can be calculated as follows:
derivative of velocity, we have

du
a: -=,

clt

where we have chosen to treat
function of the wave vector k,
written as

the one-dimensional case first. But velocity is a
and consequently the above equation may be re-

du dk
"- dkdt'

5.15

Since acceleration is the time

(s.8 l)

(s.82)

which, when we substitute for the velocity from (5.72), and for dkldt from (5.78),
yields

This has the same form as Newton's second law, provided we define a dynamical
efectiue mass m* by the relation

IdzE-o: *7P ''

m*:h2 lff) (5.83)

Thus, insofar as the motion in an electric field is concerned, the Bloch electron
behaves like a free electron whose effective mass is given by (5.83).

The mass la* is inversely proportional to the curvature of the band; where the
curvature is large-that is, d2Eldk2 is large-the mass is small; a small curvature
implies a large mass (Fig. 5.36).

Large mass

k

Fig.5.36 The inverse relationship between the mass and the curvature of the energy
band.

We have previously used the concept of effective mass (Sections 5.6 and 5.8).
Those situations are now superseded by-and are in fact special cases of-the
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general relation (5.83). Thus, if the energy is quadratic in k,

E: akz,

where a is a constant. Then Eq. (5.83) yields

mx : hz l2a,

which is equivalent to rewriting (5.84) as E : hzk2 l2m*, the standard form.

E

229

(s.84)

(5.85)

kc!
a

Fis. 5.37 (a) The band structure, and (b) the effective mass ,r?* versus k.

Figures 5.37(a) and (b) show, respectively, the band structure and the effective

mass rz*, the latter calculated according to (5.83). Near the bottom of the band,

the effective mass rz* has a constant value which is positive, because the quadratic

relation (5.84) is satisfied near the bottom of the band. But as k increases, rn* is
no longer a strict constant, being now a function ofk, because the quadratic rela-

ion (5.84) is no longer valid.
-. Note also that beyond the infiection point k" the mass rz* becomes negative,

since the region is now close to the top of the band, and a negative mass is to be

expected (Sections 5.6 and 5.8).
The negative mass can be seen dynamically by noting that, according to Fig.

5.34, the velocity decreases for k > k,. Thus the acceleration is negative, i'e.,

opposite to the applied force, implying a negative mass. This means that in this
region ofk-space the lattice exerts such a large retarding (or braking) force on the

electron that it overcomes the applied force and produces a negative acceleration.

The above results may be extended to three dimensions. The acceleration is

(b)
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dY
1::.

dt

If we write this in cartesian coordinates, and use (5.70) and (5.78), we find that

s. I A2E
a': ) ..--F..t: / n? a*,at, 't' I'J : x'Y'z'

J

which leads to the definition of effective mass as

I A2E

Fat W , l,J: x,l,z. (5.86)

The effective mass is now a second-order tensor which has nine components.
When the dispersion relation can be written ast

E(k) : (ark2. + ark] + ark!), (s.87)

then using (5.86) leads to an effective mass with three components : m!, : h2 f\ar,
mir: h2 12a2, znd m!": h2 l2qt In this case the mass of the electron is
anisotropic, and depends on the direction of the external force. When the force
is along the k,-axis, the electron responds with a mass z],, while a force in the
kr-direction elicits an effective mass m|. A relation of the type (5.87),
corresponding to ellipsoidal contours, is a common occurrence in semiconductors,
e.g., Si and Ge. Note that in this case, unlike the free-electron case, the
acceleration is not, in general, in the same direction as the applied force.

It may also happen that one of the a,'s in (5.87) is negative. This means that
the mass in the corresponding direction is negative, while the other directions
exhibit positive masses. This again is vastly different from the behavior of the
free electron.

The concept of effective mass is very useful, in that it often enables us to treat
the Bloch electron in a manner analogous to a free electron. Nonetheless, the Bloch
electron exhibits many unusual properties which are alien to those of a free
electron.

5.16 MOMENTUM, CRYSTAL MOMENTUM, AND PHYSICAL ORIGIN OF
THE EFFECTIVE MASS

We have said on several occasions that a Bloch electron in the state ry'u behaves as

if it had a momentum fik. Basically, there are three different reasons to support
this statement.

f This is possible near a point at which the energy has a minimum, a maximum, or a
saddle point.

(*),,:
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a) The Bloch function has the form

rlt*: eik''ux' (5'89)

which, since atu is periodic, appears essentially as a plane wave of wavelength

). :2rlk. This, combined with the deBroglie relation, leads to a momentum

hk.

b) When an electric field is applied, the wave vector varies with time according to

d(hk\
T. : F._,, (5.90)

a momentum. Here F"*, refers to the externalagain indicating that ftk acts as

force applied to the crystal.

c) In collision processes involving a Bloch electron, the electron contributes a

momentum equal to ftk.

These reasons are sufficiently important to warrant identification of fik with

the momentum. The fact is, nevertheless, that hk is not equal to the actual

momentum of the Bloch electron. To make the distinction clear, let us denote

the vector ftk by p". That is,

9": hk'

We shall refer to this as the crystal momentum.

(5.e r )

The actual momentum of the electron p can be evaluated using quantum

methods. According to quantum mechanics the average momentum is given by

p : (ful - ihVlllk>, 6.92)

where - iftV is the momentum operator and rlry is the Bloch function. If one

evaluates this integral, using the properties of the wave function ry'1 (see the

problem section at the end of this chapter), one finds t\at

p: moY, Y = T-Vr I tt) (5.e3)

where m is the mass of the .free electron and v is the velocity as given by (5.70).

Thus the true momentum of the electron is equal to the true maSS rn times

the actual velocity v, which seems to be a plausible result.

In retrospect, one may have suspected the original identification of p. with the

actual momentum from the outset. Since the function rz1 in (5.89) is not a
constant, the Bloch function ry'1 is not quite a plane wave, and correspondingly the

vector fik is not quite equal to the momentum. Also, if P" : hk were the true
momentum, then the force appearing on the right of (5.90) should have been the

total force, and notjust the external force. As we shall see, there is a force exerted

by the lattice, yet this force does not appear to influence p".
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The above ideas may now be assembled to give a physical interpretation of
the effective mass. Since the vector p : ,.n ov is equal to the true momentum, one may
write

where F,o, and F, are, respectively, the total force and the lattice force acting on
the electron. By lattice force, we mean the force exerted by the lattice on the
electron as a result of its interaction with the crystal potential. The left side in
(5.94) can be readily expressed in terms of the effective mass, namely

du
*oA F,o, : F"*1 * F1,

du F.,,
*o d, *o **'

ni : m^ F"^r

" F",, +F,.

(5.e4)

(5.e5)

(5.e6)

as we can see by referring to Eqs. (5.81) through (5.83). substituting this into
(5.94), and solving for m*, one finds

Now we see that the reason why m* is different from mo, the free mass, lies in the
presence of the lattice force -Fr. If f', were to vanish, the effective mass would
become equal to the true mass.

The effective mass ra* may be smaller or larger than mo, or even negative,
depending on the lattice force. Suppose that the electron is "piled up" primarily
near the top of the crystal potential, as shown in Fig. 5.38(a). When an

+ Fext +fext

Fig. 5'38 (a) Electron spatial distribution leading to an effective mass rn + smaller than mo.
(b) A distribution leading to m* > m6.

external force is applied, it causes the electron to "roll downhill" along the
potential curve. As a result, a positive lattice force becomes operative and hence,
according to (5.96), m* I mo. This is what happens in alkali metals, for instance,
and in the conduction band in semiconductors. Here ru* is less than mo because the
lattice force assists the external force.

(b)(u)
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On the other hand, when the electron is piled mainly near the bottom of the
potential curve (Fig. 5.38b), then clearly the lattice force tends to oppose the
external force, resultingin m* > zo. This is the situation in the alkali halides, for
instance. If the potential wave is sufficiently steep, then ^F. becomes larger than
F",,, and z* becomes negative.

Note that the lattice force -Fr, which appears in (5.94), is a force induced
by the external force. Thus if F"*, : 0, then the velocity is constant (Section
5.13), and hence -F. : 0, according to (5.94). It is true that the lattice also exerts
a force on an otherwise-free electron even in the absence of F"*,, but that force has

already been included in the solution of the Schrcidinger equation, and hence in
the properties of the state ry'u. That force (as we stated in Sections 5.13 and 4.4)
does not scatter the wave ry'*.

However, the crystal momentum D" : hk is still a very useful quantity.
In problems of electron dynamics in external fields, crystal momentum is much
more useful than true momentum, since it is easier to follow motion in k-space
than in real space. Therefore we shall continue to use p" and refer to it as the momen-
tum, when there is no ambiguity, and even drop the subscript c.

In other words, the effective mass rn* and the crystal momentum ik are artifices
which allow us--formally at least-to ignore the lattice force and concentrate on
the external force only. This is very useful, because lattice force is not known
a priori, nor is it easily found and manipulated as is the external force.

5.17 THE HOLE

A hole occurs in a band that is completely filled except for one vacant state.
Figure 5.39 shows such a hole. When we consider the dynamics of the hole in an

Fig.5.39 The hole and its motion in the presence of an electric field.

external field, we find it far more convenient to focus on the motion of the vacant
site than on the motion of the enormous number of electrons filling the band. The
concept of the hole is an important one in band theory, particularly in semi-
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conductors, in which
e.g., the transistor.

Suppose the hole
current density of the

5.17

it is essential to the operation of many valuable devices,

is located at the wave vector k,, as shown in Fig. 5.39. The
whole system is

-pJr,: V )u.(U), (5.97)

where the sum is over all the electrons in the band, with the prime over the
summation sign, indicating that the state k, is to be excluded, since that
state is vacant. Since the sum over the filled band is zero, the current densitv
(5.97) is also equal to

l^ : ; u"(k,). (s.e8)

That is, the current is the same as if the band were empty, except for an electron
of positiue charge *e located at k,.

When an electric field is now applied to the system, and directed to the
left (Fig. 5.39), all the electrons move uniformly to the right, in k-space, and at the
same rate (Section 5.14). Consequently the vacant site also moves to the right,
together with the rest of the system. The change in the hole current in a time interval
6l can be found from (5.98):

6Jh:

which, when we use (5.70), (5.83), and (5.78), can be transformed into

i(#) r,# u,,

(s.ee)

where re*(k,) is the mass of an electron occupying state k,.
This equation gives the electric current of the hole, induced by the

electric field, which is the observed current.t Since the hole usually occurs near
the top of the band-due to thermal excitation of the electron to the next-higher
band, where the mass m*(k) is negative-it is convenient to define the mass of a
hole as

ml : - m*(k,), (5. r00)

t In practice a band contains not a single hole but a large number of holes, and in the
absence of an electric field the net current of these holes is zero because of the mutual
cancelation of the contributions of the various holes, i.e., the sum of the expression (5.98)
over the holes vanishes. When a field is applied, however, induced currents are created,
and since these are additive, as seen from (5.99), a nonvanishing net current is established.

e I I / -e2 t6Jn: v *\k)F 6t : v \^\or)' u''
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which is a positive quantity, and write (5.99) as
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(s. l0r )

(5.102)

u,^:;4e a,

Note that the hole current, like the electron current, is in the same direction as the

electric field.
By examining (5.98) and (5.101), we can see that the motion of the hole,

both with and without an electric field, is the same as that of a particle with a

positiue charge e and a positiue mass m[,. Viewing the hole in this manner results
in a great simplification, in that the motion of all the electrons in the band has been

reduced to that of a single "particle." This representation will be used frequently
in the following discussions.

We may note, incidentally, that according to (5.99), if the hole were to lie
near the bottom of the band, where m*(kr) > 0, then the current would be

opposite to the field. This means that the system would act as an amplifler,
with the field absorbing energy from the system. This situation is not likely to
occur, however, because the hole usually lies near the top of the band.t

5.18 ELECTRICAL CONDUCTIVITY

We discussed electrical conductivity previously in connection with the free-electron
model (Sections 4.4 and 4.8), in which we obtained the result

ne2tp

m*

The quantity n is the concentration of the conduction-or valence-electrons and
rp is the collision time for an electron at the Fermi surface. Now let us derive the
corresponding expression for electrical conductivity within the framework of band
theory.

When the system is at equilibrium-i.e., when there is no electric field-the
FS is centered exactly at the origin, as shown in Fig. 5.a0(a). Consequently the net
current is zero, because the velocities of the electrons cancel in pairs. That is, for
every electron in state k whose velocity is v(k), another electron exists in state -k
whose velocity v(-k): -v(k) is simply the reverse of the former. This result,
found in the free-electron model, also holds good in band theory, and accounts
for the vanishing of the current at equilibrium.

When an electric field is applied, each electron travels through k-space at a

f A proposal for an amplifier operating on essentially the same principle was advanced
by H. Kroemer, Phys. Reu. lO9, 1856 (1955).
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Fig. 5.40 (a) In the uur"lil" of an electric field the rs rc []rrt"."d at the origin, and the
electron currents cancel in pairs. (b) In the presence of an electric field, the FS is
displaced and a net current results.

uniform rate, as discussed in Section 5.14. That is,

eE6k': - i6,,
where 6k, is the displacement in a time interval dt. Since an electron usually "lives"
for an interval equal to the collision time z, the average displacement is

(5.103)

Consequently the FS is displaced rigidly by this amount, as shown in Fig. 5.40(b).
There are now some electrons which are no, compensated-i.e., canceled-by
other electrons, and which are indicated by the cross-hatched crescent-shaped
region. They contribute a net current.

The density of this current can be calculated as follows: It is given 6y

J, : - e Do,, x concentration of uncompensated electrons

: - eAr,,g(E) 6E

: - ele.*g(ur\?r) 
",u0,, 

(5.104)

where Do,, is the component of the Fermi velocity in the x-direction and the bar
indicates an average value.

Note that g(E.)6E gives the concentration of uncompensated electrons,
g(E") being the density of states at the FS and 6E the energy absorbed by the
electron from the field. Noting that 0El0k, : hop,*, and substituting for dk,
from (5.103). one obtains

5k-: - 9,.'h

J,: e2a?.,rrg(E)8, (5.105)
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where the collision time has been designated as zp, inasmuch as we are clearly
dealing with electrons lying at the FS. Note that the current is in the same

direction as the field.
For a spherical FS, there is a spherical symmetry, and hence one lnay write

01,,: +a? which, when substituted into (5.105), leads finally to the following
expression for the electrical conductivity:

6 : I e2uzrrrg(Ep), (s.106)

which is the expression we have been seeking.

Note that o depends on the Fermi velocity and the collision time, but also note
the dependence on the density of states at the FS, g(E.). Often this is the predomin-
ant factor in determining the conductivity, as we shall see shortly.

Expression (5.106) is more general than the free-electron formula (5.102),

and far more meaningful. Equation (5.102) implies that conductivity is controlled
primarily by r, the electron concentration. However, conductivity is, in fact,
controlled primarily by the density of states 9(E.) instead. In the appropriate
limit, expression (5.106) reduces to (5.102) as a special case, as it must. To
establish this, we use the relation s@) : +n2(2m*lh2)3/2prtz [see (5.63)],
E, : !m*u2r, and EF : (h2l2m*)(3n2n)213 [from (5.67)], which we find
reduce (5.106) to (5.102).

Fig. 5.41 Position of the Fermi energy level in a monovalent metal and in an insulator.
In the former, S(Ei is large, while in the latter, g(Esl: O.

Figure 5.41 shows the density of states for a typical solid, indicating the
position of the Fermi level for a monovalent metal, and also for an insulator.
In the metal, the level E. is located near the middle of the band where g(E.) is
large, leading to a large conductivity, according to (5.106). In the insulator, the

level Eo is right at the top of the band, where g(Eo) : 0. Thus the conductivity
is zero, despite the fact that the Fermi velocity, which also appears in (5.106),

is very large.
The expression (5.106), though restricted to the case in which the FS is

spherical, is useful in unraveling the important role played by the density of states.

The results may be generalized to include the effects of more complex FS shapes

EIEF

c(q
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(as you will find by referring to the bibliography), which often lead to unwieldy
expressions.

Another important aspect of the electrical conduction process-and of trans-
port phenomena in general-is that they enable us to calculate the collision time
rp. We discussed this subject in a semiclassical fashion in Section 4.4for the free-
electron model, but a more rigorous treatment involves the use of quantum methods
(see Appendix A), and perturbation theory in particular. The scattering
mechanisms are the same as those discussed in connection with the free-election
model (Section 4.5)-scattering by lattice vibrations, impurities, and other lattice
defects-but the details of the calculation are highly complicated (Ziman, 1960),
and will not be given here.

5.I9 ELECTRON DYNAMICS IN A MAGNETIC FIELD: CYCLOTRON
RESONANCE AND THE HALL EFFECT

We discussed electron dynamics in a magnetic field in Section 4. l0 with respect
to the free-electron model, where we also treated cyclotron resonance and the
Hall effect. Here we shall discuss the way in which this is modified for a Bloch
electron, taking into account the interaction with the crystal potential. This subject
is more useful in practice, as the magnetic field is often used in studies of band struc-
ture.

Cyclotron resonance

The basic equation of motion describing the dynamics in a magnetic field is

-e[v(k)xB], (s.107)

where the left side is the time derivative of the crystal momentum, and the right
side the well-known Lorentz force due to the magnetic field. This equation
is a plausible one in light of the discussion in Sections 5.14 and 5.16, in
which we concluded that the momentum of the crystal usually acts as the familiar
momentum, provided only the external force is included. [The equation (5.107)
may also be derived from detailed quantum calculations.]

According to (5.107), the change in k in a time interval dr is given by

6k: - (elh)lv(k) x Bldt, (5. r 08)

which shows that the electron moves in k-space in such a manner that its displace-
ment dk is perpendicular to the plane defined by v and B. Since 6k is perpendicular
to B, this means that the electron trajectory lies in a plane normal to the
magnetic field. In addition, 6k is perpendicular to v which, inasmuch as y is normal
to the energy contour in k-space, means that 6k lies along such a contour. Putting
these two bits of information together, we conclude that the electron rotates along

dkh::
dt
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Fig. 5.42 Trajectory of the electron in k-space in the presence of a magnetic field.

an energy contour normal to the magnetic field (Ftg. 5.42), and in a counterclock-
wise fashion.

Also note that, because the electron moves along an energy contour, no energy

is absorbed from, or delivered to, the magnetic field, in agreement with the well-
known facts concerning the interaction of electric charges with a magnetic field.

As Fig. 5.42 shows, the motion of the electron in k-space is cyclic, since, after
a certain time, the electron returns to the point from which it started. The
period 7 for the motion is, according to (5.108), given by

(5.r0e)

where the circle on the integration sign denotes that this integration is to be

carried out over the complete cycle in k-space, i.e., a closed orbit. In
(5.109), the differential 6k is taken along the perimeter of the orbit, while
u(k) is the magnitude of the electron velocity normal to the orbit. Also
note that in deriving (5.109) from (5.108), we have used the fact that v is normal
to B, since the electron trajectory lies in a plane normal to B.

The angular frequency @c associated with the motion is crr" : 2nf T, which,
in light of (5.109), is given by

r:$at:+f#'

lr 6k
a, : (2neBlr)/ 

9.fO-----
(5.1 l0)

This is the cyclotron frequency for the Bloch electron. It is the generalization of
the cyclotron frequency (4.38) derived for the free-electron model.

We conclude that the motion of a Bloch electron in a magnetic field is a
natural generalization of the motion of a free electron in the same field. A free
electron executes circular motion in velocity space along an energy contour with
a frequency @": eBlm*. A Bloch electron executes a cyclotron motion along
an energy contour with a frequency given by (5.110). The energy contour in
this latter case may, of course, be very complicated.

Electron trajectory
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When the standard form E : h2k2 l2m* is applicable, the frequency or" in
(5.110) may be readily calculated. The cyclotron orbit is circular in this case,

and in evaluating the integral we note that o(k):hklm*, which is a constant
along the orbit, since the magnitude k of the wave vector is constant along this
contour trajectory. Thus

f 6k I f -- 2nk 2tm*
I ,t-l : wt*\! uo: t*t*.1: i'

rvhich, when substituted into (5.110), produces

@": eBlm*'

This, as expected, agrees with the result for the free-electron model.
But, of course, Eq. (5.110) is more general than the free-electron result, and

applies to a contour of arbitrary shape, although evaluating the integral
may become very tedious. In the problem section at the end of this chapter, you
will be asked to evaluate o. for contours which, although more complicated than
those in the free-electron model, are still simple enough to render the integral in
(5.110) tractable.

In discussing the above cyclotron motion, we have disregarded the effects of
collision. Of course, if this cyclotron motion is to be observed at all, the electron
must complete a substantial fraction of its orbit during one collision time; that is,
a"r I l. This necessitates the use of very pure samples at low temperature under
a very strong magnetic field.

The Hall effect

When we were discussing the Hall effect in the free-electron model (Section 4.10),
we found that the Hall constant is given by

IR.: --,fr"€ (s.1 l l)

where n" is the electron concentration. The negative sign is due to the negative
charge of the electron. The general treatment of the Hall effect for Bloch
electrons becomes quite complicated for arbitrary FS, requiring considerable
mathematical effort (Ziman, 1960). However, we can obtain some important
results quite readily.

Suppose that only holes were present in the sample. Then we could apply
to the holes the same treatment used for electrons in Section 4. 10, and would obtain
a Hall constant

I
Rrr : 

-,frt€
(s.ll2)
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where R is now positive because of the positive charge on the hole (nn is
the hole concentration).

Actually, in metals, holes are not present by themselves; there are always some

electrons present. Thus when two bands overlap with each other, electrons

are present in the upper band and holes in the lower. The expression for the

Hall constant when both electrons and holes exist simultaneously is given by

(see the problem section)

(s.r l3)

where R" and Rn are the contributions of the individual electrons and holes, as

given above, and oe and oh are the conductivities of the electrons and holes

(o.: n"e't"lm! and oh: nhezxlmf).
Equation (5.113) shows that the sign of the Hall constant R may be either

negative or positive depending on whether the contribution of the electrons or

the holes dominates. If we take n. : flh, which is the case in metals, then

lR"l : lRnl and the sign of R is determined entirely by the relative magnitudes

of the conductivities o,and on. Thus if o. > on-that is, if the electrons have small

mass and long lifetime-the electrons' contribution dominates and R is negative.

And when the opposite condition prevails, the holes'contribution dominates, and

R is positive. We can now understand why some polyvalent metals-e.g., Zn and

Cd-exhibit positive Hall constants (see Table 4.3)'

5.20 EXPERIMENTAL METHODS IN DETERMINATION OF BAND
STRUCTURE

Now let us discuss some of the experimental techniqttes used to determine the

band structure in metals. For example, how did physicists determine the Fermi

energies in Table 4.1, or the Fermi surfaces shown in Fig. 5.26 for Cu and

Fig. 5.30 for Be? This field of solid-state physics is a wide one, and has been

expanding at a rapid pace. Our discussion here will therefore be rather sketchy,

leaving it to the reader to pursue the subject in greater detail by referring to the

entries in the bibliograPhY.
One can determine the Fermi energy by the method of soft x-ray emission.

When a metal is bombarded by a beam of high-energy electrons, electrons from
the inner K shellt are knocked out, leaving empty states behind. Electrons in the

valence band now move to fill these vacancies, undergoing downward transitions,
as shown in Fig. 5.a3(a). The photons emitted in the transition, usually lying in the

soft x-ray region-about 200 eV-are recorded and their energies measured.

Figure 5.43(b) shows the intensity of the x-ray spectrum as well as the energy

f The atomic shells n : 0, 1, 2, etc., are usually referred to as the K, L, M, etc., shells,

respectively.

^ R"o? t R6of
u-r\- (o.+o)2
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Fig. 5.43 (a) Emission of soft x-rays. (b) Intensity of the spectrum of x-ray emission
versus energy for Li, Be, and Al.

range for several metals. Since the K shell is very narrow, almost to the point of
being a discrete level, the width of the range shown in Fig. 5.43(b) is due entirely
to the spread of the occupied states in the valence band, i.e., the width is equal
to the Fermi level. one can also extract information from Fig. 5.43(b) on the shape
of the density of states. In fact, the shape of the curve is determined primarily by
the density of states of the valence band.

Let us now turn to the determination of the FS, and discuss one of the
many methods in common use: the Azbel-Kaner cyclotron resonence (AKCR)
technique. A semi-infinite metallic slab is placed in a strong static magnetic
field Bo, which is parallel to the surface (Fig. 5.44). As a result, electrons in the

Fig. 5.44 Physical setup for Azbel-Kaner cyclotron resonance.

metal begin to execute a cyclotron motion, with a cyclotron frequency c.r..
Now an alternating electromagnetic signal of frequency ro, circularly polarized in
a counterclockwise direction, is allowed to travel parallel to the surface and along
the direction of the static field Bo. This signal penetrates the metal only to a

60

(b)(a)
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small extent, equal to the skin depth (see Section 4.ll), and so is confined to a
short distance from the surface. Only electrons in this region are affected by the

signal.
The electrons near the surface feel the field of the signal and absorb energy

from it. This absorption is greatest when the condition

(D: @" (s.l l4)

is satisfied, because the electron then remains in phase with the signal field through-

out the cycle. This is the resonance condition'
During a part of its cycle, the electron actually penetrates the metal

beyond the skin depth, where the signal field vanishes. A resonance condition is

still satisfied, provided only that, when the electron returns to the region at the

surface, it is again in phase with the field. In general, therefore, the condition

for resonance is
a: la)", (s.lls)

where / : l, 2, 3, etc., at all harmonics of the cyclotron frequency al..

The AKCR for Cu is shown in Fig. 5.45. (Usually the frequency a.r is held fixed

and the field is varied until the resonance condition is satisfied.)

a, kG

Fig. 5.45 AKCR spectrum in cu at T : 4,2"K. The crystal surface (upper surface) is

cui along the (l0O) plane. The ordinate of the curve represents the derivative of the

surface resistivity with respect to the field. [After Hai.issler and Wells, Phys. Reu., 152,

675, t9661

Not only is the method capable of determining ar" (and hence the effective

mass m*), but also the actual shape of the FS. In general, electrons in different

regions of the surface have different cyclotron frequencies, but the frequency

which is most pronounced in the absorption is the frequency appropriate to the

extremal orbit, i.e., where the FS cross section perpendicular to Bo is

greatest, or smallest. Therefore, by varying the orientation of Bo, one can measure

the extremal sections in various directions, and reconstruct the FS.
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The experiment is usually performed at very low temperatures, that is,
T - 4"K, on very pure samples, and at very strong fields-about 100 kG.
Under these conditions, the collision time r is long enough, and the cyclotron
frequency a;" high enough, so that the high-field condition a"r D r is satisfied.
In this limit, the electron executes many cycles in a single collision time, leading to
a sharp, well-resolved resonance. The frequency ar" usually falls in the microwave
range.

Optical ultraviolet techniques are also used in determining band structure.
Figure 5.46 shows the principle of the method. when a light beam impinges on a

Fig. 5.,16 Interband optical absorption.

metal, electrons are excited from below the Fermi level into the next-higher band.
This interband absorption may be observed by optical means-i.e., reflectance
and absorption techniques, which give information concerning the shape of the
energy bands. In this case, two bands are involved simultaneously, and the
results cannot be expressed in terms of the individual bands separately. But if
the shape of one of these is known, the shape of the other may be determined.
For further discussion of the optical properties of metals in the ultraviolet region-
which is where the frequencies happen to lie in the case of most metals-refer to
Section 8.9.

5.21 LIMIT OF THE BAND THEORY; METAI-INSULATOR TRANSITION

So far in this chapter we have based our discussion entirely on the so-called band
model of solids. This model has been of immense value to us;it is capable of
explaining all the observed properties of metals, and is the basis of the semi-
conductor properties to be discussed in chapters 6 and 7. yet this model has a
limitation which we now wish to probe.

consider, for example, the case of Na. This substance is a conductor because
the 3s band is only partially filled-half filled, to be exact. Suppose that we cause
the Na to expand by some means, so that the lattice constant a can be increased
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arbitrarily. Would the material then remain a conductor for any arbitrary value of
a? The answer must be yes, if one is to believe the band model, because, regardless

of the value of a, the 3s band would always be half full. It is true (the model

predicts further) that the conductivity o decreases as a increases, but the decrease

is gradual, as shown in Fig. 5.47.

Fig. 5.47 Electrical conductivity o versus lattice constant a.

In fact, however, this is not correct. As a increases, a critical value a. is reached

at which the conductivity drops to zero abruptly, rendering the solid an insulator,

and it remains so for all values a ) Q,. Thus for a sufficiently large lattice con-

stant, the metal is transformed into an insulator, and we speak of the melal-

insulator transition (also known as the Mott transition).
To explain this transition, we need to recall some of the fundamental concepts

underlying band theory. In this theory, Bloch electrons are assumed to be deloca-

lized, extending throughout the crystal, and it is this delocalization which is

responsible for metallic conductivity. As a delocalized particle, the Bloch electron

spends a fraction of its time (l/N, to be exact), at each atom. The interaction

between the various Bloch electrons is taken into account only in an average man-

ner, i.e., the interaction between individual electrons is neglected.

However, as a increases, the bandwidth decreases (recall the TB model, Section

5.8), until it becomes quite small at sufficiently large a. In that case, the band model

breaks down because it allows the presence of two or more electrons at the same

lattice site, which cannot happen because of the Coulomb repulsion between

electrons. When the band is wide, this is not serious, because electrons can

readjust their kinetic energies to compensate for the increase in the coulomb

potential energy. But for a narrow band the kinetic energy is, at bQst, quite small,

and this readjustment is not possible.

In effect, for very large a, the proper electronic orbitals in a crystal are not of
the Bloch type. They are localized orbitals centered around their respective sites,

which mitigates the large coulomb energy. Since the orbitals are localized, as in

the case of free atoms, conductivity vanishes, as depicted in Fig. 5.47.

Note that the above conclusion holds true even though the energy levels still
form a band, and even though the band is only half full. The point is that electronic

orbitals become localized, and hence nonconducting.
The metal-insulator transition has been observed in VO, (vanadium oxide)
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and other oxide materials. Although vo, is normally an insulator, it is trans-
formed into a metallic material at sufficiently high pressure.

SUMMARY

The Bloch theorem and energy bands in solids

The wave function for an electron moving in a periodic potential, as in the case of a
crystal, may be written in the Bloch form,

/*(r) : eik''ur(r),

where the function uu(r) has the same periodicity as the potential. The function
ry'* has the form of a plane wave of vector k, which is modulated by the
periodic function uu. Although the function ry'* itself is nonperiodic, the electron
probability density l/ul ' is periodic; i.e., the electron is delocalized, and is
deposited periodically throughout the crystal.

The energy spectrum of the electron is comprised of a set of continuous
bands, separated by regions of forbidden energies which are called energy gaps.
The electron energy is commonly denoted by E,(k), where r is the band index.

Regarded as a function of the vector k, the energy E(k) satisfies several
symmetry properties. First, it has translational symmetry

E(k+G):E(k),

which enables us to restrict our consideration to the first Brillouin zone only. The
energy function E(k) also has inversion symmetry, E(-k) : E(k), and
rotational symmetry in k-space.

The NFE and TB models

In the NFE model the crystal potential is taken to be very weak. Solving the
Schrcidinger equation shows that the electron behaves essentially as a free particle,
except when the wave vector k is very close to, or at, the boundaries of the zone.
In these latter regions, the potential leads to the creation of energy gaps. The
first gap is given by

Ec : 2lV-ronl,

where V-2o1ois a Fourier component of the crystal potential.
The wave functions at the zone boundaries are described by standing waves,

which result from strong Bragg reflection of the electron wave by the lattice.
The TB model, in which the crystal potential is taken to be strong, leads to the

same general conclusions as the NFE model, i.e., the energy spectrum is composed
of a set of continuous bands. The TB model shows that the width of the band
increases and the mobility of the electron becomes greater (the mass lighter) as
the overlap between neighboring atomic functions increases.
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Metals Yersus insulators

If the valence band of a given substance is only partially full, the substance acts

like a metal or conductor because an electric field produces an electric current
in the material. If the valence band is completely full, however, no current is

produced, regardless of the field, and the substance is an insulator.
When the gap between the valence band and the band immediately above it is

small, electrons may be thermally excited across the gap. This gives rise to a small
conductivity, and the metal is called a semiconductor.

Velocity of the Bloch electron

An electron in the Bloch state ry'1 moves through the crystal with a velocity

vkE(k).

This velocity remains constant so long as the lattice remains perfectly periodic.

Electron dynamics in an electric field

In the presence of an electric field, an electron moves in k-space according to the

relation t : - @lh)s.

The motion is uniform, and its rate proportional to the field. One obtains this
relation at once if one regards the electron as having a momentum hk.

Effective mass

The effective mass of a Bloch electron is given by

m* : h2l(d2Eldk\.

The mass is positive near the bottom of the band, where the curvature is positive.

But near the top, where the band curvature is negative, the effective mass is also

negative. The fact that the effective mass is different from the free mass is due to the

effect of the lattice force on the electron.

The hole

A hole exists in a band which is completely full, with one vacant state. The

hole acts as a particle of positive charge le. When the hole lies near the top
of the band, which is the usual situation, the hole also behaves as if it has a
positive effective mass.

Electrical conductivity

Electrical conductivity is given by

I

h

6 : t e2ulrps(E).
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This expression is a particularly sensitive function of g(Er), the density of states
at the Fermi energy. ln monovalent metals, o is Iarge because g(8.) is large, while
the opposite is true for polyvalent metals. In insulators, the electrical conductivity
vanishes because OG): O.

Under appropriate circumstances, the above expression for o reduces to the
familiar form o : ne2rFlm* of the free-electron model.

Cyclotron resonance and the Hall effect

The motion of a Bloch electron in a magnetic field is governed by

- e(v x B).

The electron moves along an energy contour in a trajectory perpendicular to
the field B, and the motion is referred to as cyclotron motion.

The cyclotron frequency is found to be

a": (2neBlD I 6y,
where the integral in the denominator is ,"nJr'.r", a closed contour. Measuring
this frequency gives information about the shape of the contour, and hence about
the shape of the band. The above expression reduces to the familiar form
@" : eBlm* for the case of a standard band.

when both electrons and holes are present in the metal, they both contribute
to the Hall constant. The resulting expression is

- R"o? + R6ofn: 1r* *!-'
when the electron term dominates, the Hall constant R is negative; when the hole
term dominates, the Hall constant R is positive.
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QUESTIONS

l. It was pointed out in Sections 6.3 and 4.3 that an electron spends only a little time
near an ion, because of the high speed of the electron there. At the same time it was

claimed that the ions are "screened" by the electrons, implying that the electrons are

so distributed that most of them are located around the ions. Is there a paradox here?

Explain.
2. Figure 5.10(c) is obtained from Fig. 5.10(a) by cutting and displacing various segments

of the free-electron dispersion curve. Is this rearrangement justifiable for a truly free

electron? How do you differentiate between an empty lattice and free space?

3. Explain why the function ry'o in Fig. 5.18(b) is flat throughout the Wigner-Seitz cell
except close to the ion, noting that this behavior is different from that of an atomic
wave function, which decays rapidly away from the ion. This implies that the coulomb
force due to the ion in cell I is much weakened in the flat region. What is the physical

reason for this?
4. Band ouerlap is important in the conductivity of polyvalent metals. Do you expect

it to take place in a one-dimensional crystal? You may invoke the symmetry properties

of the energy band.

PROBLEMS

1. Figure 5.7 shows the first three Brillouin zones of a square lattice.
a) Show that the area of the third zone is equal to that of the first. Do this by

appropriately displacing the various fragments of the third zone until the first
zone is covered completely.

b) Draw the fourth zone, and similarly show that its area is equal to that of the
first zone.

2. Draw the first three zones for a two-dimensional rectangular lattice for which the
ratio of the lattice vectors alb:2. Show that the areas of the second and third
zones are each equal to the area of the first.

3. Convince yourself that the shapes of the first Brillouin zones for the fcc and bcc
lattices are those in Fig. 5.8.

4. Show that the number of allowed k-values in a band of a three-dimensional sc lattice
is N, the number of unit cells in the crystal. hi6 : 5bn14+L k vul*U ltr l,t f X "f fq

5. Repeat Problem 4 for the first zone of an fcc lattice (zone shown in Fig. 5.8a).

6. Derive Eqs. (5.21) and (5.22).

7. Show that the first three bands in the emptyJattice model span the following energy

ranges.
. l-- r

e = -lt h- tl-l()r, r o to nzhz l2moaz ; Ezi n2h2 f moaz to zn2h2 f moaz ;
.ahA

zu E s.iota) , ZtLFlu. : 2n2h2lmoa2 toen2h212moa'.

8. a) Show that the octahedral faces of the first zone of the fcc lattice (Fig. 5.8a) are
due to Bragg reflection from the (lll) atomic planes, while the other faces are
due to reflection from the (200) planes.

b) Show similarly that the faces of the zone for the bcc lattice are associated with
Bragg reflection from the (l l0) atomic planes.

4. fhe vrfiru oP ItrBx il tlr. to,r^l^ Sa, d( uhttcp,(( of, -h reciproc6\f.d,
(*)), il*6.r+), kr= hi()+) ? k!= n.(+), k'=,nrt*)

V l'teip6co( p.ln+i, (+) I . Th. 
^((,uuu\ 

K u^(uej ir. ( l,x,,nd (on. Iai

ar( (+rlL*jt , *;= nl = fflr.,r*(,o eeils
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9. Suppose that the crystal potential in a one-dimensional lattice is composed of a series
of rectangular wells which surround the atom. Suppose that the depth of each well
is I/o and its width a/5.
a) Using the NFE model, calculate the values of the first three energy gaps. Compare

the magnitudes of these gaps.

b) Evaluate these gaps for the case in which Zo : 5 eV and a: 4 A.
10. Prove that the wave function used in the TB model, Eq. (5.27), is normalized to unity

if the atomic function f,, is so normalized. lHint: For the present purpose you may
neglect the overlap between the neighboring atomic functions.]

ll. The energy of the band in the TB model is given by

E(k): E"- P-!leik'*i,
j

where B and 7 are constants, as indicated in the text, and x, is the position of the/th
atom relative to the atom at the origin.
a) Find the energy expression for a bcc lattice, using the nearest-neighbor approxima-

tion. Plot the energy contours in the k,-k, plane. Determine the width of the
energy band.

b)

V")
Repeat part (a) for the fcc lattice.
Using the fact that the allowed values of k in a one-dimensional lattice are given

A
rb

by k: n(2nlL), show that the density ofelectron states in the lattice, for a lattuy K : n\LlLlt_), srluw Lflal rlle (Icnst[y oI eteclron slates ln tne latuce, Ior a lattlce.
of unit length, is given by the n,^ Le,f ,f \- uolvre! tr^. -tht lgryrU dk

t t/.t.\ df - ifu- rarresldrdlrrot ctlP,;;:IeiH""iln"frU'fu;i" I ffi @,), i I,[, I, l[I] ii=,
r TR moael ana nlnr -/F\ -o^',o rU 9Ce )J

fi*5. *n* nv,ub,rS lwo,tr b. .1rt"t q4 drp=

k^
b) Evaluate this density of states in the TB model, and plot .a(E) versus EI lLe)dE

13. Calculate the density of states for the first zone of an sc lattice according to the empty-
lattice model. Plot g(E), and determine the energy at which .gr(E) has its maximum.
Explain qualitatively the behavior of this curve.

14. a) Using the free-electron model, and denoting the electron concentration by r, show
' that the radius of the Fermi sphere in k-space is given by

ky: (3n2n)l13 -

b) As the electron concentration increases, the Fermi sphere expands. Show that
this sphere begins to touch the faces of the first zone in an fcc lattice when the
electron-to-atom ratio nfn^:1j6, where nu is the atom concentration.

c) Suppose that some of the atoms in a Cu crystal, which has a4 fcc lattice, are
grad-ual.ly replaced by Zn atoms. Considerin g that Zn is difrlent while Cu is
mondvaient, calculate the atomic ratio of Zn to Crt in a CuZn alloy (brass) at
which the Fermi sphere touches the zone faces. Use the free-electron model. (This
particular mixture is interesting because the solid undergoes a structural phase
change at this concentration ratio.)

15. a) Calculate the velocity of the electron for a one-dimensional crystal in the TB model,
and prove that the velocity vanishes at the zone edge.

b) Repeat (a) for a square lattice. Show that the velocity at a zone boundary is
parallel to that boundary. Explain this result in terms of the Bragg reflection.

h,
/)rl , fiv...eg L=
\T/
)de
/ -dKG). t#l
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c) Repeat for a three-dimensional sc lattice, and show once more that the electron
velocity at a zone face is parallel to that face. Explain this in terms of Bragg
reflection. Can you make a general statement about the direction of the velocity
at a zone face?

16./Suppose that a static electric field is applied to an electron at time r:0, at which
V instant the electron is at the bottom ofthe band. Show that the position of the elec-

tron in real space at time r is given by ,f,0b1!rJsrYwrrvJ^V^ll?J

| ,/ ..;)tAx: xo * G 
eQr: Ftl6,

where xo is the initial position and F: - eE is the electric force. Assume a one-
dimensional crystal, and take the zerp-energy level at the bottom ofthe band. Is the
motion in real space periodic? Explain.

17. a) Using the TB model, evaluate the effective mass for an electron in a one-
dimensional lattice. Plot the mass z* versus t, and show that the mass is indepen-
dent of k only near the origin and near the zone edge.

b) Calculate the effective mass at the zone center in an sc lattice using the TB model.
c) Repeat (b) at the zone corner along the [111] direction.

18. Prove Eq. (5.18).

19. a) Calculate the cyclotron frequency @c for an energy contour given by

h2^h2E(k):_^ *k:+ _Lz
zmi 2ml'"t'

where the magrretic field is perpendicular to the plane of the contour.

t l-V- r
I Answer: to": I *B,lL 4mim; J

b) Repeat (a) for an ellipsoidal energy surface

E(k): J-kl+ k)+ !-4,tmt zmi

where the field B makes an angle 0 with the k,-axis of symmetry of the ellipsoid.

1n,,,,,,," 
: l(#)' "o,, 

e * #,,,, uj''' .)

In Section 5.19 we discussed the motion of a Bloch electron in k-space in the presence

of a magrretic field. The electron also undergoes a simultaneous motion in r-space.
Discuss this motion, and in particular show that the trajectory in r-space lies in a
plane parallel to that in k-space, that the shapes of the two trajectories are the same

except that the one in r-space is rotated by an angle of -nlZ relative to the other, and
expanded by a linear scale factor ot (hleB). lHint: Use Eq. (5.108) to relate the
electron displacements in r- and k-space.]
Prove Eq. (5.113) for the Hall constant of an electron-hole system.

20.

2t_
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