University of Tikrit \College of science - Lectures of Pathogenic Bacteria \ 2025-2026 \cdot Dr. Bushra Ali Kadhim

Ministery of Higher education and scientific research

University of Tikrit

College of science

Department of Biology

Lectures of Pathogenic Bacteria

For Diploma students - Pathological analyses - 2025-2026

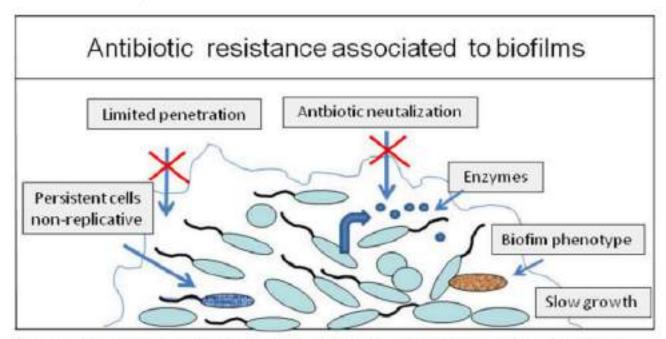
Assistant professor Dr. Bushra Ali Kadhim

bushraa.ali@tu.edu.iq

Mechanisms of Resistance Related to Biofilm

Abstract

Biofilms are structured microbial communities attached to surfaces and embedded in a self-produced extracellular polymeric substance (EPS). They are major contributors to antimicrobial resistance (AMR) and persistent infections across medical, industrial, and environmental settings. Microorganisms within biofilms demonstrate resistance levels up to 1,000-fold higher than planktonic cells due to complex mechanisms including physical barrier effects, altered microenvironments, metabolic heterogeneity, efflux pump overexpression, genetic exchange, persister cell formation, and quorum sensing-regulated resistance pathways. This article reviews the principal mechanisms of biofilm-associated resistance and highlights their clinical relevance.


1. Introduction

Biofilms are microbial aggregates adherent to biological or inert surfaces and encased within EPS composed of polysaccharides, proteins, nucleic acids, and lipids [1]. Biofilm formation follows a multi-step process involving initial attachment, microcolony development, maturation, and dispersion [2]. In clinical practice, biofilms pose major challenges in chronic wounds, urinary catheters, endotracheal tubes, prosthetic implants, and dental plaque. Their presence complicates antimicrobial therapy and is associated with treatment failures.

Biofilm-related infections often persist despite appropriate antimicrobial selection and therapeutic concentrations. This resilience arises from specialized mechanisms that shield biofilm-embedded bacteria from host immunity and antimicrobials [3]. Understanding these mechanisms is essential in developing novel anti-biofilm therapeutic strategies.

Figure 1. Biofilm Formation Cycle

The diagram below illustrates the multi-step process of biofilm formation, from initial attachment to dispersion.

The antibiotic may be retained by interactions with the extracellular matrix or be neutralized by the production of enzymes that modify it. The metabolic heterogeneity may alter the growth preventing antibiotic action if its molecular target requires active metabolic pathways, or the oxygenation or pH gradients inhibit the action of the antimicrobial. The appearance of persistent or phenotype within biofilm makes it insensitive to the antibiotic

Fig. 2. Antibiotic resistance associate to biofilms.

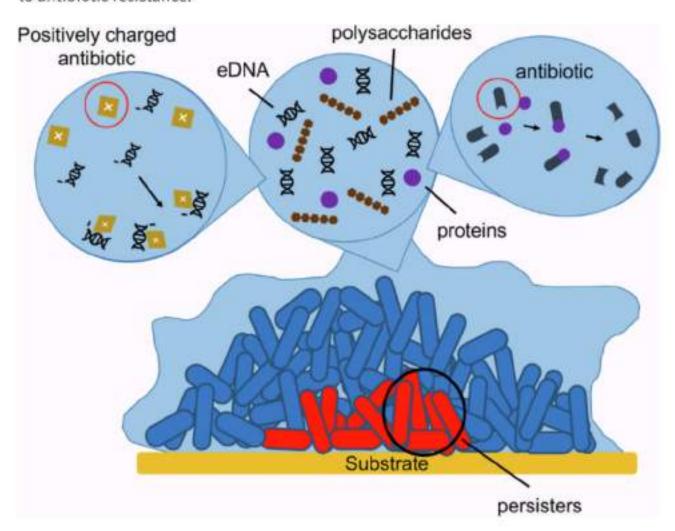
2. Biofilm Structure and Its Impact on Resistance

The architecture of a biofilm is not random; it consists of water-filled channels enabling nutrient exchange, cell clusters, and a complex EPS matrix [4]. The structural features contribute to resistance in multiple ways:

2.1. Extracellular Polymeric Substance (EPS) Matrix

The EPS acts as a physical and chemical shield. Components such as exopolysaccharides and extracellular DNA (eDNA) bind to antimicrobials, reduce diffusion, or inactivate them [5]. For example, the alginate produced by **Pseudomonas** aeruginosa biofilms limits the penetration of aminoglycosides [6].

2.2. Heterogeneous Biofilm Microenvironments


Gradients of oxygen, nutrients, pH, and redox potential exist within biofilm layers. Cells in deeper regions exhibit slow growth or dormancy, reducing susceptibility to antibiotics that target active metabolism, such as beta-lactams or fluoroquinolones [7].

2.3. Spatial Arrangement of Cells

Cells deep within the structure are arguably protected from host immune components such as neutrophils and macrophages, further facilitating persistent infection [8].

Figure 2. Physical Barrier and Resistance Mechanisms

This diagram shows how the EPS matrix and the presence of persister cells contribute to antibiotic resistance.

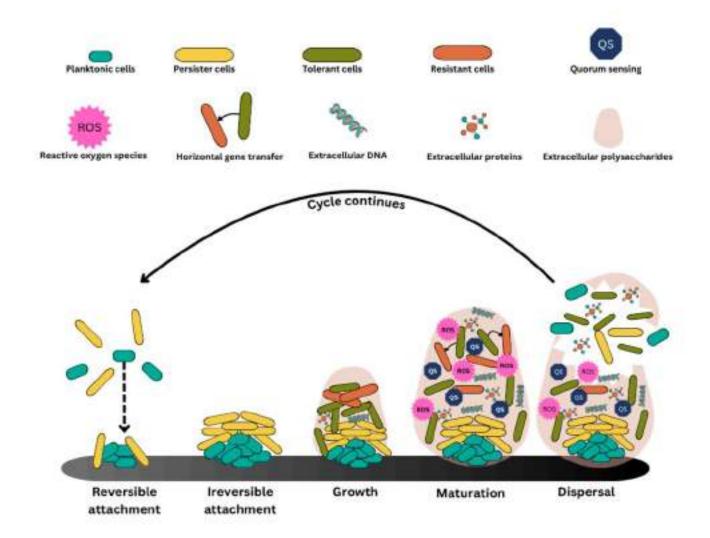
3. Mechanisms of Antimicrobial Resistance in Biofilms

3.1. Limited Antimicrobial Penetration

The EPS matrix acts as a diffusion barrier. Antimicrobials may be trapped, neutralized, or delayed as they move through EPS [9]. This insufficient penetration allows the interior bacterial population to survive initial exposure, promoting tolerance.

Factors influencing penetration include:

- Binding of antimicrobial molecules to negatively charged polysaccharides
- Enzymatic degradation within EPS
- Biofilm thickness and density [10]


3.2. Metabolic and Growth Rate Changes

Biofilm bacteria are metabolically diverse. Deep-layer bacteria enter slow-growth or dormant states due to nutrient limitation. Antibiotics that target active processes (protein synthesis inhibitors, cell wall synthesis inhibitors) become less effective against these cells [11].

This metabolic slowdown is a key cause of **antibiotic tolerance** rather than classic resistance.

Figure 3. Overview of Biofilm Resistance Mechanisms

A conceptual overview illustrating limited penetration, neutralization, and the presence of slow-growing cells.

4. Genetic Mechanisms Enhancing Resistance

4.1. Upregulation of Efflux Pumps

Biofilm cells often overexpress multidrug efflux pumps. For example:

- P. aeruginosa upregulates MexAB-OprM and MexEF-OprN pumps during biofilm growth [12].
- Efflux systems remove a wide range of antimicrobial agents, reducing intracellular concentrations.

4.2. Horizontal Gene Transfer (HGT)

Biofilms enhance the frequency of genetic exchange due to:

High cell density

- · Stabilizing effects of eDNA
- Presence of mobile genetic elements such as plasmids, transposons, and integrons [13]

HGT in biofilms accelerates the spread of resistance genes like **beta-lactamases** and **carbapenemases**.

4.3. Mutator Phenotypes

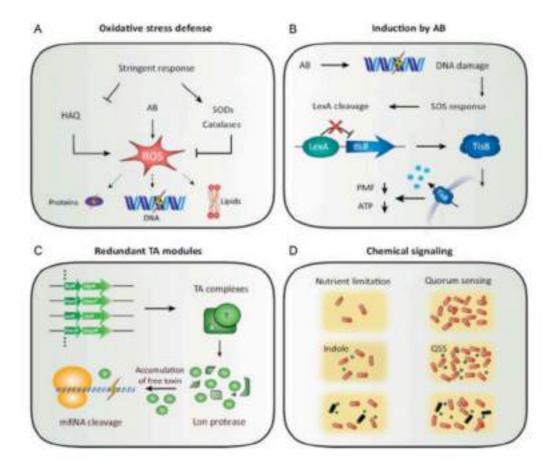
Stress within biofilms induces mutagenesis, giving rise to variants with enhanced antibiotic resistance [14].

5. Persister Cells

Persister cells are a key contributor to biofilm tolerance. They are phenotypic variants that enter a dormant state, making them highly tolerant to antibiotics without possessing genetic resistance [15].

5.1. Characteristics of Persister Cells

- Survive lethal antibiotic concentrations
- Represent 1–5% of biofilm populations
- · Responsible for infection recurrence after treatment cessation [16]


5.2. Mechanisms of Persistence

Mechanisms include:

- Activation of toxin-antitoxin (TA) modules
- Downregulation of metabolic pathways
- ATP depletion [17]

Figure 4. Susceptible, Resistant, and Tolerant Cells

This graph illustrates the difference in survival rates between susceptible, resistant, and tolerant (persister) cells upon antibiotic exposure.

6. Biofilm-Associated Quorum Sensing (QS) and Resistance

Quorum sensing (QS) is a cell-cell communication mechanism using signaling molecules like acyl-homoserine lactones. QS regulates biofilm formation and resistance behaviors.

6.1. QS-Controlled Resistance Pathways

Quorum sensing enhances resistance by regulating:

- EPS production
- Efflux pump expression
- Enzymatic degradation of antimicrobials [18]

6.2. Examples

The Las and Rhl QS systems in P. aeruginosa modulate beta-lactamase expression and biofilm maturation [19].

7. Enzymatic Inactivation of Antimicrobials

Biofilms may produce enzymes that degrade antimicrobials. For example:

- Beta-lactamases concentrated within EPS protect neighboring cells against beta-lactam antibiotics [20].
- Catalases reduce oxidative stress caused by host immune responses [21].

These enzymes accumulate in the matrix, contributing to communal resistance.

8. Host Immune Evasion

Biofilms prevent effective phagocytosis and oxidative killing by:

- Shielding bacteria from immune cells
- · Reducing complement activation
- Surviving neutrophil extracellular traps (NETs) through DNases [22]

The synergy of immune evasion and antimicrobial tolerance produces chronic, difficult-to-treat infections [23].

9. Clinical Implications

Biofilms play a critical role in device-related infections:

- Catheter-associated urinary tract infections (CAUTIs)
- · Ventilator-associated pneumonia
- · Prosthetic joint infections
- Infective endocarditis [23]

Treatment often requires combined strategies:

- High-dose antimicrobials
- · Biofilm-disrupting agents
- Mechanical device removal

· Use of anti-QS or anti-EPS therapies

10. Strategies to Overcome Biofilm-Associated Resistance

10.1. Anti-QS Drugs

QS inhibitors such as furanones disrupt biofilm coordination and reduce resistance [24].

10.2. Enzyme-Based Biofilm Degradation

- DNases degrade eDNA
- Dispersin B degrades polysaccharides [25]

10.3. Nanoparticle-Mediated Drug Delivery

Nanoparticles enhance penetration and overcome efflux pump resistance [26].

10.4. Phage Therapy

Bacteriophages can penetrate biofilms, lyse cells, and stimulate biofilm disruption [27].

10.5. Combination Therapy

Combining antibiotics with anti-biofilm agents or quorum-sensing inhibitors significantly enhances eradication rates [28].

Conclusion

Biofilms are a major driver of antimicrobial resistance through their complex physical, chemical, genetic, and metabolic defense mechanisms. Understanding these resistance pathways is essential for developing novel therapeutic strategies and improving clinical outcomes. Targeting biofilm architecture, persister cells, quorum sensing, and EPS components offers promising avenues for anti-biofilm therapies.

References

- Flemming HC et al. (2016). Biofilm matrix composition and function.
- Hall-Stoodley L, et al. (2004). Bacterial biofilms: from natural environment to infectious diseases.
- Costerton JW et al. (1999). Biofilms and chronic infections.
- Wingender J, Flemming HC. (2011). Biofilm structure and function.
- 5. Vuong C, Otto M. (2002). Staphylococcal biofilm matrix.
- 6. Mathee K et al. (1999). Alginate production and antibiotic penetration.
- 7. Stewart PS. (2012). Mini-review: biofilm resistance.
- Jensen PO et al. (2010). Immune interactions with biofilms.
- 9. Mah TF. (2003). Antimicrobial penetration in biofilms.
- Donlan RM. (2001). Biofilms in clinical infections.
- Walters MC et al. (2003). Metabolic activity in biofilms.
- Zhang L, Mah TF. (2008). Efflux pump expression in biofilms.
- Molin S, Tolker-Nielsen T. (2003). HGT in biofilms.
- 14. Conibear TC et al. (2009). Mutation rates in biofilms.
- 15. Lewis K. (2010). Persister cells and tolerance.
- 16. Keren I et al. (2004). Persister cell survival.
- 17. Maisonneuve E, et al. (2013). TA modules and persistence.
- 18. Parsek MR, Greenberg EP. (2005). QS in biofilms.
- 19. Yang L et al. (2009). QS regulation in P. aeruginosa.
- 20. Ciofu O et al. (2015). Beta-lactamase accumulation in biofilms.
- 21. Elkins JG et al. (1999). Catalase and oxidative defenses.
- 22. Gunn JS et al. (2016). Immune evasion by biofilms.
- 23. Percival SL et al. (2015). Biofilms in healthcare.
- 24. Hentzer M et al. (2003). QS inhibitors.

- 25. Kaplan JB. (2010). Enzymatic disruption of biofilms.
- 26. Fulaz S et al. (2019). Nanotechnology for biofilms.
- 27. Alves DR et al. (2014). Phage therapy and biofilms.
- 28. Bjarnsholt T. (2013). Combination therapies for biofilms.